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a  b  s  t  r  a  c  t

Leaf  area  index  (LAI)  is  a key  variable  for modeling  energy  and  mass  exchange  between  the  land  surface
and  the  atmosphere.  Inversion  of physically  based  radiative  transfer  models  is the  most  established
technique  for  estimating  LAI from  remotely  sensed  data. This  study  aims  to  evaluate  the suitability  of
the  PROSAIL  model  for LAI  estimation  of three  typical  row crops  (maize,  potato,  and  sunflower)  from
unmanned  aerial  vehicle  (UAV)  hyperspectral  data. LAI  was  estimated  using  a look-up  table  (LUT)  based
on the  inversion  of  the  PROSAIL  model.  The  estimated  LAI  was  evaluated  against  in  situ LAI measurements.
The  results  indicated  that  the  LUT-based  inversion  of the  PROSAIL  model  was  suitable  for  LAI estimation
of  these  three  crops,  with  a root mean  square  error  (RMSE)  of  approximately  0.62  m2 m−2,  and  a  relative
RMSE  (RRMSE)  of approximately  15.5%. Dual-angle  observations  were  also  used  to  estimate  LAI  and
proved  to be  more  accurate  than  single-angle  observations,  with  an  RMSE  of approximately  0.55  m2 m−2

and  an  RRMSE  of  approximately  13.6%.  The  results  demonstrate  that  additional  directional  information
improves  the  performance  of LAI  estimation.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Leaf area index (LAI), defined as the total one-sided area of leaves
per unit of ground area (Bréda, 2003), is a key parameter in a wide
range of biological and physical processes (Gower et al., 1999; Li
et al., 2009; Myneni et al., 2002). For instance, the monitoring and
mapping of LAI is vital for modeling energy and mass exchange
between the land surface and the atmosphere (Asner et al., 2003;
Running et al., 1999; Li et al., 2009). Remote sensing provides a
cost-effective method to estimate LAI over extended regions. There
are two main approaches for estimating LAI from remotely sensed
data: statistical and physical approaches (Baret and Buis, 2008;
Dorigo et al., 2007; Kimes et al., 2000). The statistical approaches
are based on empirical relationships between ground-based LAI

∗ Corresponding author at: Key Laboratory of Agri-informatics, Ministry of Agri-
culture/Institute of Agricultural Resources and Regional Planning, Chinese Academy
of  Agricultural Sciences, Beijing 100081, China. Tel.: +86 1082105077.

E-mail addresses: lizhaoliang@caas.cn, lizl@unistra.fr (Z.-L. Li).

measurements and spectral vegetation indices (Darvishzadeh et al.,
2008a; Haboudane et al., 2004). The physical approaches are based
on radiative transfer model (RTM) inversion (Combal et al., 2002a;
Meroni et al., 2004). The inversion of RTMs has been integrated
multi-angular sensors (Dorigo, 2012; Meroni et al., 2004; Vuolo
et al., 2008).

Three different techniques are commonly used for the inver-
sion of RTMs: iterative optimization techniques (Jacquemoud et al.,
1995; Meroni et al., 2004; Vohland et al., 2010), look-up tables
(LUTs) (Darvishzadeh et al., 2012; Dorigo, 2012; Richter et al.,
2011), and neural networks (NNs) (Atzberger, 2004; Bacour et al.,
2006; Baret et al., 2007). Several studies have found that LUTs
and NNs delivered the best accuracy and speed in the inversion
of RTMs (Richter et al., 2009; Weiss et al., 2000). The inversion
of RTMs is, by nature, an ill-posed problem for two main reasons
(Atzberger, 2004; Combal et al., 2002a). One reason is that various
combinations of canopy biophysical variables may produce simi-
lar canopy reflectance spectra. The other is that measurement and
model uncertainties may  induce large inaccuracy in the simulated
reflectance spectra.
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Different strategies have been proposed to solve the ill-posed
inverse problem (Li et al., 2013a, 2013b). For LUT-based inver-
sion methods, the use of multiple solutions (rather than the single
best solution) modestly increases the robustness of LAI estimation
(Darvishzadeh et al., 2011; Weiss et al., 2000). The exploitation of
a priori knowledge, e.g., on the ranges and distributions of vari-
ables (Darvishzadeh et al., 2008b; Si et al., 2012) and on land cover
classification (Dorigo et al., 2009; Verrelst et al., 2012), is another
way to constrain solutions to the ill-posed problem and to improve
the accuracy of LAI estimation. Moreover, the use of multi-angle
observations has also been shown to improve the accuracy of LAI
estimation (Dorigo, 2012; Meroni et al., 2004; Vuolo et al., 2008).

Because of its ease of use and general robustness, the PROSAIL
model has been used to estimate LAI over fields of agricultural crops
such as sugar beet (Combal et al., 2002b; Jacquemoud et al., 1995),
maize (Koetz et al., 2005; Yang et al., 2012), and alfalfa (Bacour
et al., 2002; Vuolo et al., 2008). However, relatively few investiga-
tions have been performed over potato and sunflower fields. The
objective of this study is twofold: (i) to further evaluate the suit-
ability of the PROSAIL model for LAI estimation of maize, potato,
and sunflower fields in northern China using the LUT approach;
and (ii) to compare the performance of LAI estimation from single-
and dual-angle observations against in situ measurements. This
paper is organized as follows. The study area, data, and methods are
described in Section 2. The results are presented in Section 3 and
discussed in Section 4. Conclusions are drawn in the last section.

2. Materials and methods

2.1. Study area

To evaluate a potential calibration and validation test field for
future hyperspectral sensors, a comprehensive field campaign was
conducted over the Baotou test site (Inner Mongolia, China, 40.88◦

N, 109.53◦ E) on 3 September 2011. The Baotou test site has an aver-
age ground elevation of approximately 1.3 km above sea level. The
test site receives little precipitation and has a high percentage of
cloud-free days. This area has a continental climate that is charac-
terized by four seasons and a large diurnal temperature variation.
The yearly average temperature is 6–7 ◦C, and the average annual
rainfall is 200–250 mm.  The main agricultural crops of this region
are maize, potato, and sunflower, and all three require irrigation.

2.2. Data

2.2.1. In situ measurements
Four reference targets, which were 15 m × 15 m and with nom-

inal reflectance of 20%, 30%, 40%, and 50%, were placed on a soil
background over the study area. These four targets were used
to perform the radiometric calibration of unmanned aerial vehi-
cle (UAV) hyperspectral sensor. In situ surface reflectance spectra
of these four targets were collected with an SVC HR-1024 field-
portable spectroradiometer at the time of UAV hyperspectral data
acquisition. The spectroradiometer has 1024 channels covering the
spectral range from 350 to 2500 nm with spectral resolution of
3.5 nm at 700 nm wavelength, 9.5 nm at 1500 nm wavelength, and
6.5 nm at 2100 nm wavelength. Before and after each target mea-
surement, a reference measurement was collected with a white
Spectralon reference panel. The spectra were measured in abso-
lute radiance mode at nadir. The raw spectra of each target were
scaled with the reference measurements to produce reflectance
spectra. Five measurements of each target were averaged to yield
a representative reflectance spectrum.

Atmospheric measurements were collected with an automatic
CIMEL CE318 sunphotometer at the time of the UAV hyperspectral

data acquisition. The sunphotometer has nine channels at nomi-
nal wavelengths of 340, 380, 440, 500, 670, 870, 936, 1020, and
1640 nm.  Measurements at 936 nm were used to derive columnar
water vapor (CWV) (Bruegge et al., 1992) with the coefficients sim-
ulated by MODTRAN (Halthore et al., 1997). Aerosol optical depth
(AOD) at 550 nm was  derived from the other channels using the
Ångström law, following the method of Estellés et al. (2006). The
measured values of AOD at 550 nm and CWV  at the time of UAV
hyperspectral data acquisition were 0.18 and 1.7 g cm−2, respec-
tively. These values were used as inputs to atmospheric radiative
transfer models such as MODTRAN to perform atmospheric correc-
tions on the UAV hyperspectral data.

In situ LAI measurements were collected with the Plant Canopy
Analyzer LAI-2200 instrument under overcast sky conditions on 2
September 2011. The average LAI was calculated in each sample
plot based on the one above-canopy measurement and five below-
canopy measurements. When LAI measurements were conducted,
the sun was  kept behind the operator and the operator used a view
restrictor of 45◦. No corrections were performed to account for leaf
clumping or the influence of non-photosynthetic plant components
(e.g., stems). A total of 14 LAI measurements were performed: 4 on
maize, 4 on potato, and 6 on sunflower plots. The measured LAI
values ranged from 2.4 to 3.2 m2 m−2 for maize, 4.0–4.8 m2 m−2 for
potato, and 1.9–4.8 m2 m−2 for sunflower. The in situ LAI measure-
ments were used to evaluate the accuracy of LAI estimation from
hyperspectral data.

2.2.2. UAV hyperspectral data
Two  flight lines were acquired by a new hyperspectral sensor

over the study area on 3 September 2011 from approximately 14:40
to 15:00 local time. This hyperspectral sensor is referred to as UAV-
HYPER and was installed on a UAV. The UAV-HYPER sensor contains
128 bands that cover the spectral range from 350 to 1030 nm, with a
bandwidth of 5 nm and a field of view of 11.5◦. During the campaign,
the operational altitude of the UAV-HYPER sensor was  approxi-
mately 3.5 km above ground level, which gave a spatial resolution
of approximately 0.7 m.

The two flight lines L1 (west–east) and L2 (east–west) overlap.
The observation details of these two flight lines are summarized in
Table 1, and subset images of the two flight lines are shown in Fig. 1.
There are 10 sample plots located along flight line L1, 11 along flight
line L2, and 7 in the overlapping area.

Pre-processing of the UAV-HYPER data includes the assess-
ment of the signal-to-noise ratio (SNR), radiometric calibration, and
atmospheric and geometric corrections. Some bands of the UAV-
HYPER sensor have low SNR values. A method based on local means
and local standard deviations of small imaging blocks was  used to
estimate SNR from the UAV-HYPER data (Gao, 1993). To minimize
the effect of low SNR on the LAI retrieval, 32 bands with SNR values
lower than 40 were discarded from further analysis: bands 1–12
(395.3–450.0 nm)  and bands 109–128 (932.5–1027.0 nm). The
radiometric calibration coefficients were determined using the four
reference targets. The atmospheric correction was performed using
a MODTRAN-based LUT method informed by atmospheric param-
eters collected at the time of the UAV-HYPER data acquisitions
(Duan et al., 2013). The geometric correction was performed using
differential GPS-derived ground control points. A second-order
polynomial transformation with nearest-neighbor interpolation
was used for the geometric correction, which achieved a geometric
accuracy of approximately one pixel.

2.3. Method

2.3.1. Generation of the LUT
The PROSAIL model (Jacquemoud et al., 2009), which cou-

ples the PROSPECT leaf optical properties model (Jacquemoud and



Download	English	Version:

https://daneshyari.com/en/article/6349095

Download	Persian	Version:

https://daneshyari.com/article/6349095

Daneshyari.com

https://daneshyari.com/en/article/6349095
https://daneshyari.com/article/6349095
https://daneshyari.com/

