
International Journal of Applied Earth Observation and Geoinformation 26 (2014) 184–192

Contents lists available at SciVerse ScienceDirect

International  Journal  of  Applied  Earth  Observation  and
Geoinformation

jo ur nal home p age: www.elsev ier .com/ locate / jag

Deformation  and  fault  parameters  of  the  2005  Qeshm  earthquake  in
Iran  revisited:  A  Bayesian  simulated  annealing  approach  applied  to
the  inversion  of  space  geodetic  data

Masoome  Amighpeya,∗,  Behzad  Voosoghia,  Mahdi  Motaghb

a Faculty of Geodesy & Geomatics Engineering, K. N. Toosi University of Technology (KNTU), Valiasr Street, Mirdamad Conjunction, Tehran, Iran
b Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, 14473 Potsdam, Germany

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 18 December 2012
Received in revised form 1 May  2013
Accepted 14 June 2013

Keywords:
Global optimization
Simulated annealing
Source parameters of earthquake
InSAR

a  b  s  t  r  a  c  t

The  estimation  of  earthquake  source  parameters  using  an earth  surface  displacement  field  in an elastic
half-space  leads  to a complex  nonlinear  inverse  problem  that  classic  inverse  methods  are  unable  to  solve.
Global  optimization  methods  such  as  simulated  annealing  are  a  good  replacement  for  such problems.
Simulated  annealing  is  analogous  to thermodynamic  annealing  where,  under  certain  conditions,  the
chaotic  motions  of atoms  in a melt  can settle  to form  a crystal  with  minimal  energy.  Following  this, the
unknown  model  parameters  are  analogous  to the  molecules  of  a molten  solid  whose  chaotic  motion
gradually  ceases  during  cooling,  and  the  state  corresponding  to  the global  minimum  of  the  cost  function
becomes  highly  probable  at  a very  low  temperatures.

Source  parameters  of  the 2005  Qeshm  earthquakes  have  already  been  estimated  using  various  studies,
including  seismicity,  the  earth’s  surface  deformation  field, and  rupture  characteristics.  Each  of  these
studies  proposes  different  mechanisms  for  the earthquakes.  In  this  study,  source  parameters  of  the  2005
Qeshm  earthquake  and  its main  aftershock  are determined  with  their  precision  by  applying  simulated
annealing  optimization  in  a Bayesian  framework  using  a coseismal  deformation  field  derived  from  Envisat
radar  interferometry.  The  results  agree  with  surface  ruptures  and  the  proposed  activation  of  the  Qeshm
and  a  NW–SE  faults  during  main  shock  and  main  aftershock.  This  estimate  indicates  a  reverse-slip  of
88  ± 11  cm  on  the  Qeshm  fault and  38 ± 12  cm  of  strike–slip  on  the  NW–SE  fault.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

One of the major goals of geophysical inversion is to find earth
models that explain geophysical observations. When estimating
the source parameters of an earthquake, observations can include
geodetic measurements of earth surface displacement obtained by
GPS and InSAR. Considering the earth as an elastic half-space, Okada
(1985) presented an analytical solution for surface deformation
due to shear and tensile faults. Given a rectangular fault geometry
(length, width, depth, strike and dip) and 3 components of disloca-
tion (rake, slip and open), they computed displacements, tilts and
strains at the free surface. Applying Okada relations which use earth
surface displacement to estimate fault geometry and dislocation
models, leads to a nonlinear inverse problem that requires finding
the minimum of a multi-variable function. In this study, we  want to
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minimize a cost function that characterizes the differences between
observed and synthetic data calculated by the Okada relations.

Optimization schemes that use gradient information of the cost
function always proceed in the downhill slope of the cost function
topology (e.g., least square adjustment). Such methods are called
a local optimization because they always converge to the mini-
mum nearest to the initial model location. In case of a multimodal
cost function, there is a fair chance that the convergence will lead
to a local minimum unless the initial model lies within the vicin-
ity of the global minimum. Instead, global optimization algorithms
achieve convergence to the global minimum even in the presence
of multimodality (e.g., Genetic algorithm [Goldberg, 1989] and sim-
ulated annealing [Ingber, 1993]). Such algorithms rely on random
model perturbations, instead of information derived from the cost
function, to update the model. Optimization approaches based on
random perturbations of the model provide the means to jump
out of local minima and potentially converge to the global mini-
mum.  These methods have been used successfully in a variety of
optimization problems (e.g., Zhou and Chen, 2012; Ferreiro et al.,
2012; Kim and Liou, 2013; Robini and Reissman, 2012) and have
worked especially well in a variety of geophysical inverse problems
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(e.g., Faegh-Lashgary et al., 2012; Fukuda and Johnson, 2010; Koot
et al., 2008).

In this study, Envisat InSAR observations are inverted to deter-
mine the source parameters of the 2005 Qeshm earthquake and its
main aftershock. Different studies have been previously performed
in this region based on earth surface rupture features (Shahpasand-
Zadeh and Hesami, 2006), earthquake modeling using InSAR
observation and seismic body waves (Nissen et al., 2007), after-
shock seismicity (Gholamzadeh et al., 2007) and regional strain
analysis (Amighpey et al., 2009). These studies propose differ-
ent earthquake mechanisms without providing a precise criterion
for the precision of the results. In this study, the inversion of an
elastic half space dislocation model is performed using simulated
annealing optimization combined with the Trust-Region-Reflective
method (Byrd et al., 2000) in a Bayesian framework that can esti-
mate both the source parameters of the main shock and its main
aftershock as well as their estimated precision. The precision of the
results is determined by computing the marginal posterior proba-
bility density of a parameter and several orders of its moments.

2. Simulated annealing method

When posed as an optimization problem, an inversion problem
essentially tries to find a model that best fits the data such that the
error function E(m) attains a global minimum. E(m) is given by:

E(m) =
(

−1
2

(dobs − Gm)T C−1
dobs

(dobs − Gm)
)

(1)

where dobs, G, m and Cdobs
are the measured data, forward modeling

operator, model vector and data covariance matrix, respectively. In
geophysical applications, E(m) is usually a function of a large num-
ber of variables or model parameters. Local optimization always
moves in the downhill direction and therefore finds the minimum
closest to the starting model. Local optimization fails when the
error surface has several peaks and troughs (Misra and Sacchi,
2008).

Simulated annealing (SA) is an alternative method for finding
the global minimum of a function E(m). In contrast to determinis-
tic approaches, simulated annealing relies on randomly sampling
the parameter space. The basic concepts of SA are borrowed from
problems in statistical mechanics that involve analyzing the prop-
erties of a large number of atoms in liquid or solid samples. Physical
annealing occurs when a solid in a heat bath is first heated until all
of the particles are distributed randomly in a liquid phase. This pro-
cess is followed by slow cooling so that all of the particles arrange
themselves in a lower energy ground state where crystallization
can occur. The optimization process involves simulating the evo-
lution of the physical system as it cools and anneals into a state
of minimum energy. At each temperature, the solid is allowed to
reach thermal equilibrium where the probability of being in a state
i with energy Ei is given by the following Gibbs or Boltzmann pdf
(Landau and Lifshitz, 1980):

P(Ei) = exp (−(Ei/KT))∑
j ∈ Sexp

(
−(Ej/KT)

) (2)

where the set S consists of all possible configurations, K is Boltz-
mann’s constant and T is temperature. Because SA samples models
in the Gibbs’ distribution, this sampler has been called a Gibbs’
sampler (GS).

After reaching thermal equilibrium, the temperature is gradu-
ally reduced such that in the limit T → 0, the minimum energy state
becomes overwhelmingly probable. If the cooling schedule is too
fast (quenching), the particles do not attain the minimum energy
state and are instead trapped in a local minimum energy state form-
ing glass. However, if the melt is cooled very slowly (annealing),
then it will eventually freeze into an energy state that is at or very

close to the global minimum of E, forming a crystal. The cooling
schedule that is used in this study is (Ingber, 1993):

Ti = T0 exp
(
−ck1/NM

)
(3)

where T0 is the initial temperature, k is the iteration number, NM
is the dimension of parameter space and c is defined as:

c = m exp
(

− n

NM

)
(4)

where m and n can be considered free parameters to help tune
ASA for specific applications. In this analogy, the unknown model
parameters represent the molecules of a molten solid. As temper-
ature is reduced, the chaotic motion of the molecules gradually
ceases, and the state corresponding to the global minimum energy
(global minimum of the cost function) becomes highly probable.

However, the Gibbs’ distribution in Eq. (2) shows that to con-
struct the pdf, we  must first evaluate the partition function in the
denominator of Eq. (1). This requires that the error function be eval-
uated at each point. However, if E(m) is known at each point in the
model space, then there is no need to use SA. Several computer
algorithms have been proposed to avoid computing error functions
at each point in the model space while still achieving an approx-
imation of the Gibbs’ pdf (Ingber, 1993). In this study, we  apply a
very fast simulated annealing approximation and use the Metropo-
lis criterion to decide whether the new model should be accepted
(Ingber, 1993).

In addition to finding a model that best matches the observa-
tions, it is important to describe the precision of the results. To
accomplish this, we  use a statistical framework to characterize the
solutions by their pdfs. The statistical approach enables us to esti-
mate uncertainty bounds on the resulting model as well as the
correlation between different model parameters. Therefore, in this
study, we  use a Bayesian statistical framework to assess the results.

3. Bayesian framework

The Bayesian formulation was  described in detail in Duijndam
(1988a,b) who  showed that the posterior probability density (PPD)
function �(m|dobs) of model m describes the solution of the geo-
physical inverse problem when a Bayesian inference model is used.
As the Bayes rule (Duijndam, 1988a,b), PPD is given by:

�(m|dobs) = p(dobs|m)p(m)
p(dobs)

(5)

where p(dobs|m) is called the likelihood function denoted by
l(dobs|m) and p(m) is the probability of the model independent of
the data, called the prior distribution. In geophysical inversion, the
denominator term p(dobs) is a constant. Assuming Gaussian error
in observations, the likelihood function takes the following form
(Duijndam, 1988a,b):

l(dobs|m) ∝ exp(−E(m)) (6)

Using Eqs. (5) and (6), the expression for the PPD can thus be
written as:

�(m|dobs) = exp(−E(m))p(m)∫
dm exp(−E(m))p(m)

(7)

where the domain of integration covers the entire model space.
In many applications, the PPD is neither analytically tractable nor
easily approximated, and simple analytic expressions for the mean
and variance of the PPD are not available. Even if the PPD were
known, there is no way to display it in a multidimensional space.
Therefore, several measures of dispersion and marginal density
functions are often used to describe the answer. The marginal PPD
of a particular model parameter, the posterior mean model and
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