
International Journal of Applied Earth Observation and Geoinformation 26 (2014) 312–321

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

jo ur nal home p age: www.elsev ier .com/ locate / jag

Implementation and performance of a general purpose graphics
processing unit in hyperspectral image analysis

H.M.A. van der Werff ∗, W.H. Bakker
Faculty for Geo-Information Science and Earth Observation, University of Twente, Enschede 7500 AE, The Netherlands

a r t i c l e i n f o

Article history:
Received 18 June 2013
Accepted 16 August 2013

Keywords:
Hyperspectral
Classification
Graphicshardware
GPGPU
IDL

a b s t r a c t

A graphics processing unit (GPU) can perform massively parallel computations at relatively low cost. Soft-
ware interfaces like NVIDIA CUDA allow for General Purpose computing on a GPU (GPGPU). Wrappers
of the CUDA libraries for higher-level programming languages such as MATLAB and IDL allow its use in
image processing. In this paper, we implement GPGPU in IDL with two distance measures frequently used
in image classification, Euclidean distance and spectral angle, and apply these to hyperspectral imagery.
First we vary the data volume of a synthetic dataset by changing the number of image pixels, spectral
bands and classification endmembers to determine speed-up and to find the smallest data volume that
would still benefit from using graphics hardware. Then we process real datasets that are too large to fit
in the GPU memory, and study the effect of resulting extra data transfers on computing performance. We
show that our GPU algorithms outperform the same algorithms for a central processor unit (CPU), that a
significant speed-up can already be obtained on relatively small datasets, and that data transfers in large
datasets do not significantly influence performance. Given that no specific knowledge on parallel com-
puting is required for this implementation, remote sensing scientists should now be able to implement
and use GPGPU for their data analysis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spectroscopy is the study of light as a function of wavelength
that has been emitted, reflected or scattered from a solid, liquid or
gas (van der Meer, 2006). Hyperspectral image analysis is the mea-
surement, analysis and interpretation of infrared spectra acquired
from a short, medium or long distance observation by airborne or
spaceborne sensors (Paz and Plaza, 2010). The objective of hyper-
spectral remote sensing, also referred to as imaging spectrometry
or imaging spectroscopy, is to identify and quantify components
of the Earth System from calibrated (radiance, reflectance or emis-
sivity) spectra acquired as images in many, narrow and contiguous
spectral bands (van der Meer et al., 2012). Hyperspectral image data
have been available for civilian use as of the 1970s, with multi-
ple high spectral resolution sensors developed since (van der Meer
et al., 2012). The continuous increase of spatial and spectral res-
olution over these years has led to a substantial increase in data
volume, a trend that is expected to continue in the future (Plaza
et al., 2011).

While in the past most hyperspectral sensors were oper-
ated from airborne platforms, several spaceborne hyperspectral
missions are currently under development (van der Meer et al.,

∗ Corresponding author. Tel.: +31 53 4874 535; fax: +31 53 4874 336.
E-mail address: harald.vanderwerff@utwente.nl (H.M.A. van der Werff).

2012). Examples of these upcoming missions are: PRISMA or PRe-
cursore IperSpettrale of the application mission, developed by the
Italian Space Agency (ISA) for launch in 2015; Sentinel missions
(Berger and Aschbacher, 2012), developed by the European Space
Agency (ESA) under the Global Monitoring for Environment and
Security (GMES) programme; HISUI or Hyperspectral Imager SUIte,
formerly called Hyper–X, developed by Japan for the Advanced
Land Observation Satellite 3 (ALOS-3) satellite with a launch sched-
uled for 2014); EnMAP or Environmental Mapping and Analysis
Program, developed by the German Aerospace Center (DLR) and
the German Research Centre for Geosciences (GFZ) for launch in
2017; HYPXIM or HYPer Spectral IMagerie, developed by the Cen-
tre National d’Etudes Spatiales (CNES) for launch in 2019; and
HYSPIRI or Hyperspectral Infrared Imager, developed by NASA, with
a launch tentatively scheduled for 2020. Spaceborne hyperspectral
sensors would allow a frequent revisit of targets, for example every
3–4 days for EnMAP (Segl et al., 2010), and will as such contribute
to the expected increase in data volume. A regular availability of
data will also support many current and future applications that
involve real-time or near real-time processing capabilities (Plaza,
2009; Lee et al., 2011; Plaza et al., 2011). As the amount of data and
complexity of processing rises, the demand for processing power
increases (Lee et al., 2011; Plaza et al., 2011).

There are significant opportunities to increase computational
power through parallel processing on modern graphics hardware
(Christophe et al., 2011). In the recent years, computer graphics

0303-2434/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jag.2013.08.009

dx.doi.org/10.1016/j.jag.2013.08.009
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2013.08.009&domain=pdf
mailto:harald.vanderwerff@utwente.nl
dx.doi.org/10.1016/j.jag.2013.08.009

H.M.A. van der Werff, W.H. Bakker / International Journal of Applied Earth Observation and Geoinformation 26 (2014) 312–321 313

hardware has become increasingly popular in scientific computing
(Kyoung-Su Oh and Jung, 2004; Walsh et al., 2009) as it can per-
form massively parallel scientific computations (Block et al., 2010).
The technique of using a graphics processing unit (GPU), which
was designed for handling computer graphics, to perform compu-
tations traditionally handled by the central processing unit (CPU) is
called General-Purpose computation on Graphics Processing Units
(GPGPU). Of the modern personal computers, 90% have GPUs inte-
grated on a video card or directly on the main board (Fresse et al.,
2010) and are now commodity hardware. As a result, this high
performance comes at relatively low cost, not only compared to
CPUs but also to other high-performance computing solutions such
as field programmable gate arrays (FPGAs, Setoain et al., 2008) or
computer grids and clusters (Paz and Plaza, 2010).

The advent of NVIDIA’s Compute Unified Device Architecture
(CUDA, NVIDIA and Corp, 2013) introduced the possibility of
including GPUs in science and engineering applications. CUDA
is a C-language environment with extensions for NVIDIA GPU
hardware specifically (Tech-X and Corp, 2013). Although CUDA
allows GPGPU via application programming interfaces (APIs), soft-
ware development kits (SDKs) and GPU-enabled C programming
language variants, it still requires programmers to be familiar
with parallel programming, boundary conditions of GPU hardware
(Christophe et al., 2011) and addressing GPU memory (Fresse et al.,
2010). Hence Christophe et al. (2011) state about “the final user
of the program” that “it is important to keep him isolated from
such implementation details”. However, the complexity of parallel
programming can be avoided by using high-level library wrappers.
Such wrappers make CUDA functionality available to a fourth-
generation programming languages (4GL) that are frequently used
by remote sensing scientists, such as MATLAB (MathWorks, 2013)
and IDL (Exelis VIS, 2013).

The use of high performance computing in hyperspectral remote
sensing has been extensively discussed before, for example in Plaza
et al. (2006b, 2011). Implementations can be found in the work of
Setoain et al. (2008) and Plaza et al. (2006a), who demonstrated
the use of GPUs for endmember extraction; Tarabalka et al. (2009)
who performed anomaly detection related to spectral unmixing;
and Plaza et al. (2011) who programmed several parallel imple-
mentations of a typical hyperspectral processing chain, including a
version for GPUs. In general, these implementations were done in
the C or C++ programming languages and performed by computer
scientists.

In this paper, we implemented GPGPU in a high-level language
that is frequently used by remote sensing scientists. We chose
IDL (Exelis VIS, 2013) and the GPULib wrapper for CUDA (Tech-
X and Corp, 2013, 2011) to use GPGPU for hyperspectral image
classification. In this implementation, specific knowledge of par-
allel programming is not needed, which makes the use of GPGPU
potentially available to a wider community of remote sensing sci-
entists. We evaluate the speed-up obtained by using GPGPU in IDL,
when realistically applied to hyperspectral datasets.

2. Methods

We first benchmarked our algorithms on synthetic data, and
subsequently applied them to real hyperspectral datasets that have
been acquired with airborne platforms. For benchmarking the GPU
algorithms against the CPU algorithms, two commonly used dis-
tance measures in feature space (Section 2.1) were selected for
implementation in IDL. We developed IDL and IDL+GPULib code
for the CPU and GPU algorithms respectively, validated these algo-
rithms with processing results of real hyperspectral imagery, and
subsequently benchmarked the algorithms with synthetic data.
After the benchmark, we tested the algorithms on the three air-
borne hyperspectral datasets. Some of these datasets were too large

to fit in the GPU memory, and required multiple subsets of these
images to be transferred to the GPU memory for processing, an
approach known as “tiling”. The resulting extra data transfers are
known to reduce overall computing performance, and are hence
of importance in the implementation and evaluation of GPGPU in
image processing.

2.1. Distance measures

Two distance measures in feature space, the Euclidean distance
and the spectral or vector angle, were used for benchmarking the
GPU and CPU algorithms. These algorithms have been chosen as
their implementation in IDL and IDL+GPULib can, apart from added
statements for GPU processing, be kept similar. The Euclidean dis-
tance (ED) is the most obvious method (Bakker and Schmidt, 2002)
to determine the distance between two vectors in feature space.
The similarity between two spectra →v and →w is determined as the
norm of the difference vector →v − →w:

ED(
→v,

→
w) = ||→v − →w||

As the Euclidean distance measure may be dominated by the
intensity component, i.e. the length of the vectors, the intensity
and spectral components are in remote sensing classifications often
determined separately (Bakker and Schmidt, 2002). The spectral
angle (SA) (Kruse et al., 1993) is one of the most widely used dis-
tance measures for determining spectral similarity. This method
treats image and reference spectra as vectors in an n-dimensional
space and calculates the angle between these vectors as a measure
of similarity (Hecker et al., 2008):

SA(�v, �w) = cos−1

(
�v · �w

||�v|| || �w||

)

A difference between the SA and ED implementations is that the
SA calculation has in theory an extra computational step when com-
pared to the ED calculation (scaling of the spectra, which is done
by dividing vectors by their length). In practice, however, hardware
limitations of the GPU requires an addition of extra computational
steps in the ED calculation. The IDL and IDL+GPULib implemen-
tation of these distance measures is explained in Section 2.3 and
shown in Figs. 1–4.

2.2. Software and hardware

The computer used in this research was an Intel x86 64 work-
station with 12 Gb of RAM and an Intel Core i7-930 CPU running
at 2.8 GHz. The GPU is an NVIDIA Tesla C1060, which has 4029 Mb
of memory available and is capable of running 240 threads simul-
taneously. This GPU card has no video connector, and computer
graphics therefore did not influence the performance of the GPU.
The computer had a 64-bit GNU/Linux operating system (Debian
“Wheezy” distribution (The Debian Project, 2013)). Version 4.2 of
the NVIDIA CUDA toolkit was used in combination with version
302.17 of the (proprietary) NVIDIA display driver. IDL version 8.2
with GPULib version 1.4.4 (both also 64-bit) were used for code
development and benchmarking.

2.3. Algorithm design

Four algorithms were initially developed to calculate the
Euclidean distance and spectral angle similarity measures, two on
a CPU only (using IDL code) and two that make use of a GPU (using
IDL+GPULib code). The IDL+GPULib implementation differs mostly
from the IDL implementation by the presence of extra statements
that regulate data transfers: All data that needs to be processed
by the GPU have to be transferred from computer memory to GPU

Download English Version:

https://daneshyari.com/en/article/6349120

Download Persian Version:

https://daneshyari.com/article/6349120

Daneshyari.com

https://daneshyari.com/en/article/6349120
https://daneshyari.com/article/6349120
https://daneshyari.com

