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a  b  s  t  r  a  c  t

This  paper  proposes  two  compound  measures  of  mapping  quality  to support  objective  comparison  of
spatial  prediction  techniques  for  geostatistical  mapping:  (1)  mapping  efficiency  –  defined  as  the  costs  per
area per  amount  of  variation  explained  by the  model,  and (2) information  production  efficiency  –  defined  as
the cost  per byte  of  effective  information  produced.  These  were  inspired  by concepts  of  complexity  from
mathematics  and  physics.  Complexity  i.e. the  total  effective  information  is defined  as  bytes  remaining
after  compression  and after  rounding  up  the numbers  using  half  the  mapping  accuracy  (effective  preci-
sion).  It  is  postulated  that  the  mapping  efficiency,  for an  area  of given  size  and  limited  budget,  is  basically
a  function  of  inspection  intensity  and  mapping  accuracy.  Both  measures  are  illustrated  using  the  Meuse
and  Ebergötzen  case  studies  (gstat, plotKML  packages).  The  results  demonstrate  that,  for  mapping  organic
matter  (Meuse  data  set),  there  is  a gain  in  the  mapping  efficiency  when  using  regression-kriging  versus
ordinary  kriging:  mapping  efficiency  is  7%  better  and  the information  production  efficiency  about  25%
better  (3.99  vs  3.14  EUR  B−1 for  the  GZIP  compression  algorithm).  For  mapping  sand  content  (Ebergötzen
data  set),  the  mapping  efficiency  for both  ordinary  kriging  and  regression-kriging  is about  the  same;
the  information  production  efficiency  is  29% better  for regression-kriging  (37.1  vs 27.7  EUR  B−1 for  the
GZIP  compression  algorithm).  Information  production  efficiency  is  possibly  a  more  robust  measure  of
mapping  quality  than  mapping  efficiency  because:  (1)  it is  scale-independent,  (2)  it  can  be  more  easily
related  to  the  concept  of  effective  information  content,  and  (3)  it accounts  for the  extrapolation  effects.
The  limitation  of  deriving  the  information  production  efficiency  is  that  both  reliable  estimate  of  the  model
uncertainty  and  the mapping  accuracy  is  required.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

Every time we produce maps, GIS and/or geographical
databases, the methods used to generate those products can be
evaluated for their efficiency. Unfortunately, most evaluation of
maps produced by land resource inventories in the world is still
done on a ‘look-good’ assessment and the inherent uncertainty of
the product is often underreported (Lunetta and Lyon, 2004). Map-
ping efficiency in, for example, conventional soil survey is often
expressed only as costs per area (e.g. 2 US$ per km2), while the
actual quality of the produced maps is often neglected (Eldridge,
1997; Legros, 2004). The main reason for this is that explicit mea-
sures of mapping quality are lacking or are not widely accepted by
soil survey agencies (Finke, 2006; Brus et al., 2011).

There is now an increasing need to quantify economic aspects
of producing maps in relation to (geo)information use (de Bruin
and Hunter, 2003; Carrick et al., 2010) and answer questions
such as: what are the costs of producing bits of information?
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what is the value of geoinformation for spatial planning and envi-
ronmental modeling? how much does any given geostatistical
mapping method costs (while producing equally accurate infor-
mation)? how much does environmental remediation cost? what
is the cost–benefit ratio between mapping and exploitation of land
resources?

The purpose of this paper is to argue for adoption and use of
objective measures of mapping efficiency in the context of geosta-
tistical mapping i.e. spatial prediction of continuous environmental
variables. We  start by extending the information content concepts
and then propose two  new measures of mapping quality potentially
interesting for both operational planning of surveys and statisti-
cal interpretation of results. We  first introduce and explain some
basic theoretical concepts – mapping scale, effective precision or
numeric resolution, complexity and compression (effective infor-
mation content) – and then illustrate how to calculate mapping
efficiency and information production efficiency using real data.

Although we primarily refer to digital soil mapping examples,
we assume that these concepts are applicable to other mapping
fields such as vegetation and/or land cover mapping, species dis-
tribution mapping, climatic mapping and similar. R code used to

0303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jag.2012.02.005

dx.doi.org/10.1016/j.jag.2012.02.005
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
dx.doi.org/10.1016/j.jag.2012.02.005


128 T. Hengl et al. / International Journal of Applied Earth Observation and Geoinformation 22 (2013) 127–138

produce all numbers and graphs in this paper are available via the
journal website.

2. Theory

2.1. Mapping scale and survey costs

Concepts of effective scale, effective pixel size, detection limit,
effective precision, mapping efficiency and information content are
often unclear to non-computer scientists and/or non-statisticians.
We hence first focus on clarifying each of these in simple terms.

Mapping scale defines many of the aspects of a geostatistical
mapping. Although we can provisionally set a nominal scale of a
mapping project to any arbitrary number, the actual (effective)
mapping scale is, in fact, determined by the actual inspection inten-
sity i.e. density of field observations (Lam and Quattrochi, 1992;
Eldridge, 1997; Stein et al., 2001). A cartographic rule used, for
example, in traditional soil mapping is that there should be at least
one, and ideally four, observations per 1 cm2 of the map  (Avery,
1987, see Table 1), hence for an area of size A that contains N field
observations, the effective scale number (SN) is:

SN =
√

4 · A

N
· 102 . . . SN =

√
A

N
· 102 (1)

where A is the surface of the study area in m2 and N is the total
number of observations (Fig. 1).

Inspection intensity can also be related to the level of detail in
the remotely sensed imagery that typically have a block support.
The corresponding pixel size can be related to scale by using the
following simple rule (McBratney et al., 2003):

p = 0.0005 · SN (2)

i.e. the pixel size should be at least 0.5 mm  in the map  scale. When
working with high resolution remote sensing imagery, Topan et al.
(2009) suggest that the ground sampling distance (GSD) should be
at least 0.1 mm GSD in the map  scale, hence the correct pixel size
is probably somewhere between 0.5 and 0.1 mm in the map  scale.

Based on Eqs. (1) and (2),  and assuming an average of 2.5 obser-
vations per 1 cm2, we can see that an objective estimate of effective
pixel size can be determined by using (Hengl, 2006):

p = 0.0791 ·
√

A

N
(3)

This principle can also be expressed as: one point sample can be
used to generate predictions at 160 pixels on a map, i.e. 100 point

samples can be used to produce 16,000 pixels in a gridded map. In
practice, most of soil surveys work with lower sampling intensities.

Legros (2004, p. 75) is somewhat less strict considering the num-
ber of field observations needed per ha:

ŜN = exp(8.669545 + 0.652391 · log(haa)) (4)

where haa is the hectares per auger bore observations. This means
that one could collect 10 auger observations for 100 ha of land to
produce ca. 5800 pixels i.e. 580 pixels per point.

Mapping scale also directly determines the survey costs.
Burrough et al. (1971),  Bie and Ulph (1972),  and Bie et al. (1973)
postulated in early 70s that the survey costs are a direct function
of the mapping scale:

log

⎧⎨
⎩

cost per km2

or
man  − days per km2

⎫⎬
⎭ = a + b · log(map scale) (5)

This model typically explains >75% of the survey costs (Burrough
et al., 1971). Based on Eq. (5),  we have fitted a linear model to the
empirical table data from e.g. Legros (2004, p. 75),  to produce the
following model:

X̂ = exp(19.0825 − 1.6232 · log(SN)) (6)

where X is the minimum cost/ha in Euros (based on estimates in
2002). To map  1 ha of soil at 1:200,000 scale (at the beginning of the
21st century), for example, one needs at least 0.48 Euros (i.e. 48 EUR
to map  a square-km); to map  soil at 1:20k would costs about 25 EUR
per ha. Legros (2004) indicates that these are the all-inclusive costs
that include salaries and time in the office needed for the work of
synthesis and editing.

In practice, estimated standard costs per area for conducting soil
survey differ from country to country. The USDA estimates that the
total costs of soil mapping at their most detailed scale (1:20k) costs
about 1.50 US$ per acre i.e. about 4 US$ per ha (Durana,2008); in
Canada, typical costs of producing soil maps at 1:20k are in the
range 3–10 CA$ per ha (MacMillan et al., 2010); in the Netherlands
3.4 EUR per ha (Kempen, 2011, pp. 149–154); in New Zealand 4 US$
per ha (Carrick et al., 2010).

Based on these global estimates we  can consider the following
rule of thumb: to map  1 ha of land at 1:20k scale, one would need
(at least) 5 US$. Therefore the model of Legros (2004) would need
to be calibrated to [USD]:

X̂c = .167 · exp(19.0825 − 1.6232 · log(SN)) (7)

Fig. 1. Some basic concepts of geostatistical mapping: spatial domain (A – area), sampling locations (N – total number of points), validation points, prediction grid (M – total
number of cells) and the grid cell size (p – pixel size).
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