ELSEVIER

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Removal of carbon dioxide by aqueous amino acid salts using hollow fiber membrane contactors

Sara Masoumi, Mohammad Reza Rahimpour*, Morteza Mehdipour

Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 6 September 2015 Received in revised form 7 January 2016 Accepted 26 May 2016 Available online xxx

Keywords: CO₂ capture Hollow fiber membrane contactor Amino acid Alkanolamines The promising absorbent based on amino acid salt has good potential in capturing CO_2 . Amino acids can be considered as a proper solvent because of characteristics such as low volatility, high resistance to degradation, high surface tension and appropriate reactivity with CO_2 in the removal of carbon dioxide. In the present work, the process of carbon dioxide absorption into two aqueous amino acid salts (potassium glycinate and potassium sarcosine) using hollow fiber membrane contactor was modeled. In this work, potassium sarcosine solution was used for the first time as an absorbent for removing CO_2 in HFMC. The performance regarding their absorbing quality of these amino acids was compared with renowned amines. The partial and ordinary equations were solved numerically in liquid, membrane and gas phases. The model results were validated using the available experimental data in the literature for PG, MEA, DEA and MDEA. The results showed that PG has a better performance when it comes to the absorption flux can be enhanced by increasing the system temperature, amino acids concentration, gas and liquid flow rates. Simulation results indicated that potassium glycinate has a better performance in relatively high partial pressures of CO_2 over MEA.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Any substance in air which could be harmful to the health, human welfare and the environment is considered as air pollutant. Carbon dioxide has been found to be one of the most important pollutant gases in the atmosphere due to the greenhouse effect and climate changes it causes. With regard to the increasing amount of carbon dioxide production, the use of an effective and economical manner to absorb this gas is highly valuable. In fact, separation processes, their apparatus and equipment are so important that in many industries, the main budget allocated to the product is spent on the separation and purification. Therefore, finding an easier and less expensive separation process can be of a great importance. Although for decades, towers and other traditional contactors had played the main role in chemical industries [1], some problems

Corresponding author.

http://dx.doi.org/10.1016/j.jcou.2016.05.008 2212-9820/© 2016 Elsevier Ltd. All rights reserved. arise in these devices due to the need for direct contact between two fluids. These problems include foaming, flooding, channeling and entrainment. Membrane contactors are alternative devices which have solved these problems and provide much larger contact area. Hollow fiber membrane module is one of these contactors [2].

Gabelman and Hwang [1] presented an extensive review on hollow fiber membrane contactors (HFMCs), which is one of the most applicable references in this area due to discussing different modules and their applications. Keshavarz et al. [2] proposed a mathematical model to predict the module performance and the effects of shell side channeling. It was found that the model based on random distribution of fibers is a suitable method for predicting the performance of commercial modules. Many researchers used different solvent for capturing carbon dioxide [3–11]. Lu et al. [12] used two aqueous solutions of MDEA-AMP and MDEA-PZ for absorbing carbon dioxide. They concluded that the mass-transfer fluxes of activated MDEA solutions are significantly higher than that of the non-activated MDEA solution. Marzouk et al. [13] worked on simultaneous removal of CO₂ and H₂S from pressurized CO₂-H₂S-CH₄ gas mixture using HFMC. They found that the liquid phase mass transfer resistance reigns at low pressures whereas gas

Abbreviations: AMP, 2-amino-2-methyl-1-propanol; DEA, diethanolamine; DEAB, 4-diethylamino-2-butanol; MEA, monoethanolamine; PG, potassium glycinate; PS, potassium sarcosine; PTFE, polytetrafluoroethylene; PVDF, polyvinylidene fluoride.

E-mail address: rahimpor@shirazu.ac.ir (M.R. Rahimpour).

Nomenclature

- *C* Concentration (kmol m^{-3})
- d_p Pore diameter (cm)
- D Diffusivity (m² s⁻¹)
- D_{kj} Knudsen diffusivity of species j (m² s⁻¹)
- *H* Henry's constant (kmol kmol⁻¹)
- J Absorption flux (kmol $m^{-2} s^{-1}$)
- *k* Reaction rate constant
- *M* Molecular weight $(kg kmol^{-1})$
- P Total pressure (kPa)
- *R* Radial coordinate (m)
- R_e Free surface radius of fiber (m)
- R_i Inner radius of fiber (m)
- R_j Reaction rate of component *j* (kmol m⁻³ s⁻¹)
- R_M Module inner diameter (m)
- *R*_o Outer radius of fiber (m)
- R_w Radius of the gas-liquid interface (m)
- *T* Temperature (K)
- U Velocity (m s⁻¹)
- *z* Axial coordinate (m)

Greek letters

- δ_1 Liquid-filled membrane thickness (m)
- *ε* Membrane porosity
- θ Packing density
- τ Tortuosity
- $\sigma_{\rm CO_2 N_2}$ Lennard-jones parameter (Å)
- Ω Collision integrals

Subscripts

- A Absorbent
- av Average
- e Effective
- G Gas
- in Input
- *i* Any diffusing species
- *m* Membrane
- nw Non-wet
- w Wet
- P Pore
- S Solvent

phase mass transfer resistance has a significant role at higher pressures. Mehdipour et al. [14] reached a complete removal of CO₂ by 2 M K₂CO₃ solution at 298 K with HFMC. The results illustrated that potassium carbonate, under its optimum conditions, can give higher CO₂ recovery than diethanolamine solution, especially if DEA wets the membrane. Furthermore, Masoumi et al. [15] studied carbon dioxide separation by amine promoted potassium carbonate solution in a hollow fiber membrane contactor. The higher fluxes of promoted K₂CO₃ with MEA or DEA as well as other advantages of K₂CO₃ solution, such as lower cost and easier regeneration, make them good alternative solutions compared to alkanolamines, such as single MEA or DEA, for CO₂ capture in HFMCs. Also they did another investigation using DEAB as a novel absorbent [16]. It was shown that CO₂ absorption flux into DEAB in all calculated range of CO₂ partial pressures is lower than MEA and higher than MDEA.

The removal of CO_2 as an acid gas by aqueous alkanolamine solutions is widely used in the chemical industry. Utilizing alkanolamines in industrial processes has some major problems such as high volatility as well as degradation because of side reactions with carbon dioxide, oxygen and other contaminants. Use of an appropriate solvent coupled with hollow fiber membrane can be a great idea to improve the absorption of carbon dioxide.

The amino acid salts have certain advantages over alkanolamines such as higher surface tension (this parameter influences on the wetting of fibers which has a direct effect on the performance of absorption) and an almost nonvolatile state (by adding a salt function into amino acid solution). Yan et al. [17] recommended PG as a suitable solvent because of its physical properties. Indeed, it avoided the wetting problem of commercial polypropylene (PP) microporous membranes, also, it had appropriate reactivity towards CO_2 compared with the conventional solvents, MEA and MDEA.

Lu et al. [18] investigated the performance of single solution (Glycine) and novel composite solution (Glycine + Piperazine). They concluded that the efficiency of the composite solution is evidently higher than that of the single glycine salt solution in coupling with hollow fiber membrane contactor. Ghasem et al. [19] applied aqueous amino acid salts for CO₂ absorption. It was clearly seen from the results that the performance of CO₂ absorption using PG is always better than MEA and DEA under the identical operating circumstances. Complete removal was achieved using potassium glycinate (PG) solution as a solvent.

This work is the first study on the CO_2 absorption into potassium sarcosine (PS) solution using hollow fiber membrane contactor. By applying the presented mathematical model, the CO_2 absorption in the case of non-wetted fibers were simulated. Liquid moves through inside the fiber and gas flows in the shell side. The reactions which occurred and velocity equations were explained comprehensively. The partial and ordinary equations were solved numerically in liquid, membrane and gas phases. The model results were validated using the available experimental data in the literature for PG, MEA and MDEA. The effects of some parameters including absorbent concentration, liquid and gas velocities, CO_2 partial pressure and wetting were investigated using the model.

2. Model theory

We can see the schematics of hollow fiber membrane contactor in Fig. 1. Hollow fiber membrane contactors consist of three parts: shell, membrane and tube. In parallel co-current flow, both the gas mixture (CO₂ and N₂) and the absorbent liquid enter the contactor from the same end, but in countercurrent case, gas mixture flows from one end and the absorbent liquid enters from another end into the membrane contactor. Carbon dioxide separates from the gas phase, penetrates through the membrane and comes in contact with absorbent liquid. After dissolution, it diffuses with reaction to the liquid phase. The partial differential equation governs in liquid phase, which flows within the fiber using a fully developed laminar parabolic velocity profile [5]. The membrane has uniform pore size distribution and thickness [5]. An atmospheric gas flows into fibers environs in the same direction based on Happel's free surface model [20]. The steady state and isothermal conditions are assumed for all sections [14]. The ideal behavior can be assumed for gas phase due to low pressure.

2.1. Reaction scheme

The zwitterion mechanism is generally acceptable to model the carbon dioxide absorption in aqueous amino acids solutions [21]. Based on the zwitterion mechanism, CO_2 reacts with the amino acid salt (PS and PG in the present case), generating zwitterions, which are intermediate components. Then, some of the

Download English Version:

https://daneshyari.com/en/article/63517

Download Persian Version:

https://daneshyari.com/article/63517

Daneshyari.com