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a  b  s  t  r  a  c  t

Permeation  drag  is  the  predominant  cause  for particle  deposition  onto  filtration  membranes,  and  it is
known  that  at  close  approach  to  the  membrane  surface  this  force  may  greatly  exceed  the  Stokes  drag
in an  unbounded  fluid.  Herein,  the  hydrodynamic  interaction  between  a  sphere  and  a  permeable  wall  is
re-visited within  the  framework  of  the  lubrication  approximation  with  the  goal  of  deriving  an  analytical
solution.  A closed-form  analytical  solution  is found,  based  on a perturbation  expansion  in  terms  of  the
scaled  permeability,  which  is  considered  a small  parameter.  Numerical  calculations  of the  drag  force  on
the sphere  agree  perfectly  with  numerical  results  available  in  the literature,  as  do  analytical  model  results
within  a range  of validity  which  is  affected  by  the  particle  size  and  membrane  permeability.  Specifically,
the presented  calculations  have  been  framed  in  the  context  of  the  low  permeabilities  and  colloidal  par-
ticle sizes  representative  of commercial  membrane  separations  in  current  use. Results  illustrate  that  for
reverse osmosis  and  nanofiltration  membranes,  the hydrodynamic  interaction  is practically  identical  to
that  of  an  impermeable  wall,  while  for ultrafiltration  membranes  the  drag  is substantially  reduced;  an
analogous  trend  is observed  for increasing  particle  sizes.  The  approximate  solution  derived  herein  offers  a
simple  and  direct  means  of  performing  hydrodynamic  force  calculations  in  particle–membrane  systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that a sphere approaching a solid wall interacts
with it hydrodynamically, such that the drag force experienced by
the sphere is greatly enhanced over that predicted by Stokes’ law
in an unbounded fluid. For the case of a sphere translating in the
direction perpendicular to the plane wall, this problem was first
fully treated by Brenner [1],  who solved the equations of creeping
motion using a stream-function formulation in bi-polar coordi-
nates. Increased drag is also exerted on a sphere translating parallel
to a plane wall, due to hydrodynamic interactions; however, this
case is not considered herein (the interested reader is referred to,
e.g., Ref. [2]).

In the considered case, that of the perpendicular approach of
a sphere to the wall, the increased force is due to ‘squeezing’ of a
liquid film between the wall and the approaching particle; at close
approach, the pressure required to drive this flow becomes exceed-
ingly large, resulting in a force on the particle which opposes its
motion. The solution diverges at contact, paradoxically predicting
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that an infinite force would be required for the sphere to contact the
surface. If, on the other hand, the wall is permeable to the surround-
ing fluid, this opposing force is significantly reduced since the fluid
may  now flow through the wall as well, as first shown by Goren
[3], who  also predicted that there must be a finite force at ‘contact’.
Goren’s analysis results in a set of non-linear difference equations,
which must be solved numerically; some tabulated data are pro-
vided for a range of scaled permeabilities which, at their lowest
range, is comparable with a system comprised of micrometer-size
particles and microfiltration membranes. Clearly, this approach is
not easily accessible for consideration of membrane–particle sys-
tems representative of modern capabilities. It is also important to
note that implicit to these models and, indeed, the present work,
is the assumption that the wall is uniformly permeable and, hence,
any local effects arising from the flow field in the vicinity of pores
are ignored. This problem has been extensively treated in the litera-
ture (see, for example, Refs. [4–7]). Exact determination of this scale
separation limit is complicated, since the ‘pore-scale’ analysis is
independent of the permeability which, in turn, is the defining char-
acteristic of a ‘macro-scale’ analysis for the permeable wall case.
However, according to Yan et al. [4],  for a particle-to-pore ratio of
10 and a separation of one particle radius, the correction coefficient
to the perpendicular drag exerted on the particle deviates from
that for the non-permeable case by 10%; the deviation from the
‘macro-scale’ permeable case is expected to be even smaller. This
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Fig. 1. Schematic illustration of the sphere-membrane geometry.

example may  serve as an approximate measure of the scale sepa-
ration appropriate for the type of ‘macro-scale’ analysis considered
in this paper.

Particle deposition onto filtration membranes is primarily
caused due to permeation drag, i.e., the force exerted on the parti-
cle by the flow of water permeating through the membrane. Most
importantly, this enhanced drag is dependent on the membrane
permeability, becoming greater as the membrane becomes less per-
meable. Therefore, when a force balance approach is used to model
particle deposition, a drag correction factor must be used to accu-
rately account for the permeation-induced force component. For
example, Chellam and Wiesner [8] used Brenner’s analytical solu-
tion to account for the increased permeation drag; this expression
does not, however, account for the permeability of the membrane
and so its validity for use in such a case must be established. Goren’s
analytical approximation for the force at contact has been used by
Knutsen and Davis [9] to describe particle dynamics at the mem-
brane surface. More recently, Goren’s tabulated numerical data
have been numerically approximated and employed for force bal-
ance calculations in a number of deposition studies [10–13].  This
approach has been shown to produce reasonable predictions of
deposition rates as well as conditions leading to reversible deposi-
tion.

While it is evident that a physically realistic drag correction for
particle deposition in membrane processes must account for the
membrane (wall) permeability, making such calculations requires
the use of extrapolations based on tabulated data or numerically
solving a set of difference equations, as formulated by Goren [3].
In this paper, the problem of a sphere interacting hydrodynami-
cally with a permeable wall is re-visited with the goal of deriving
a closed-form, approximate analytical solution, assessment of its
accuracy compared with numerical calculations and previously
published results and, finally, evaluation of the drag force for rele-
vant membrane permeabilities and representative particle sizes.

2. Model formulation

Consider a spherical particle of radius R, immersed in an incom-
pressible fluid with constant viscosity, �, in the vicinity of a
permeable membrane surface as depicted schematically in Fig. 1.
The membrane is assumed to be uniformly permeable, i.e., local
effects in the vicinity of pores are ignored. The fluid may  be pres-
surized so as to induce permeation through the membrane, and

this background pressure, p∞, is taken to be everywhere uniform
far from the sphere. It is further assumed that the sphere may  not
rotate, but may be subjected to translational motion.

The primary interest here is with the hydrodynamic interaction
at close proximity of the sphere to the wall; hence, the flow within
the gap between the sphere and the wall may  be described using
the classical ‘lubrication approximation’, also known as the ‘long-
wavelength approximation’ (for a rigorous derivation the reader is
referred to Refs. [14,15]). Essentially, within the lubrication frame-
work, it is assumed that two disparate spatial scales exist, namely
that the characteristic gap length-scale is much shorter than the
longitudinal length-scales (radial direction, in the axisymmetric
case considered here); therefore, changes over the longer length
scale occur much slower than over the short scale, and so longitu-
dinal gradients may  be considered very small at leading order.

Under this approximation, the equations of motion are reduced
to

∂p

∂r
= �

∂2
u

∂z2
, (1)

∂p

∂z
= 0, (2)

and the continuity equation

1
r

∂
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(ru) = −∂w

∂z
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in which u, w are the velocity components in the r and z direc-
tions, respectively, and p is the excess pressure (relative to the
background pressure, p∞).

The boundary conditions used herein are no-slip of the tangen-
tial velocity on the wall and sphere,

u(0) = u(h) = 0, (4)

where h = h(r) is the gap width between the sphere surface and the
wall, which may  be approximated as

h = ı + r2

2R
+ O(r4), (5)

with ı denoting the minimum distance between the sphere and the
wall (see Fig. 1).

The boundary conditions on w, the z component of the velocity,
are

w(h) = −vs, (6)

at the surface of the sphere, with vs denoting the velocity of the
sphere and

w(0) = − k∗

�l

(
pz=0 + p∞ − pp

)
= −v, (7)

at the membrane surface, in which pp is the pressure in the per-
meate side of the membrane, k* is the Darcy permeability and l is
the membrane thickness. Assuming that the permeate pressure is
atmospheric, and noting that under the lubrication approximation,
the pressure does not vary with z (see Eq. (2)), the velocity at the
boundary may  be related directly with the pressure at any radial
location, viz.

w(0) = − k

�
(p∞ + p) = −v, (8)

where k = k*/l. Note that traditionally the permeability has the
dimensions of [m2], while in the present analysis the permeabil-
ity is taken per unit thickness of the membrane, thus having the
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