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Existing evidence suggests that ambient ultrafine particles (UFPs) ( < 0.1 um) may contribute to acute
cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these
pollutants owing in part to a need for exposure surfaces that can be applied in large population-based
studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada
using mobile monitoring data collected from 414 road segments during the summer and winter months
between 2011 and 2012. Two different approaches were examined for model development including
standard multivariable linear regression and a machine learning approach (kernel-based regularized
least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations
from the data. The final models included parameters for population density, ambient temperature and
wind speed, land use parameters (park space and open space), length of local roads and rail, and esti-
mated annual average NO, emissions from traffic. The final multivariable linear regression model ex-
plained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained
79% of the variance. The KRLS model performed slightly better than the linear regression model when
evaluated using an external dataset (R>=0.58 vs. 0.55) or a cross-validation procedure (R*=0.67 vs. 0.60).
In general, our findings suggest that the KRLS approach may offer modest improvements in predictive
performance compared to standard multivariable linear regression models used to estimate spatial
variations in ambient UFPs. However, differences in predictive performance were not statistically sig-
nificant when evaluated using the cross-validation procedure.
Crown Copyright © 2015 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

increased risk of ischemic heart disease mortality among partici-
pants in the California Teachers Study Cohort. Other studies of the

Ambient ultrafine particles (UFPs) ( < 0.1 um) may contribute to
acute cardiovascular morbidity including changes in heart rate
variability and endothelial function (Weichenthal, 2012). However,
little is known about the long-term health effects of these traffic
pollutants owing in part to a need for exposure surfaces suitable
for use in large population-based studies. Recently, Ostro et al.
(2015) used a chemical transport model to examine the relation-
ship between UFP and cardiovascular mortality and reported an
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long-term health effects of UFPs have not been conducted to date
but land use regression models have been developed for several
cities including Vancouver (Abernethy et al., 2013) and Toronto,
Canada (Sabaliauskas et al., 2015; Weichenthal et al., 2016), Bar-
celona, Spain (Rivera et al., 2012), and Amsterdam, Netherlands
(Hoek et al., 2011). In general, these models suggest that within-
city spatial variations in ambient UFPs can be predicted using
various land use, traffic, and meteorological parameters with R?
values generally exceeding 50%. Moreover, Klompmaker et al.
(2015) demonstrated that short-term monitoring campaigns may
be an efficient means of developing land use regression models for
ambient UFPs and that these models may provide reasonable es-
timates of historical spatial contrasts. In developing such models,
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mobile monitoring offers an efficient means of data collection as
recently highlighted by studies in Toronto, Canada (Weichenthal
et al., 2016) and Minneapolis, USA (Hankey and Marshall, 2015a).
In this study, we developed a land use regression model for am-
bient UFPs in Montreal, Canada using data collected with both
bicycle and vehicle-based mobile platforms. In doing so, we ex-
amined two different approaches including standard multivariable
linear regression and a machine learning method (kernel-based
regularized least squares (KRLS)) that does not impose strong
function form assumptions on covariate impact on ambient UFP
concentrations.

2. Methods
2.1. Mobile monitoring of ultrafine particles

Mobile monitoring data for ambient UFPs were collected at
1-s resolution using portable condensation particle counters (TSI
CPC Model 3007) mounted on bicycles (for summer monitoring)
and vehicle roof -racks (for winter monitoring). Details of the two
monitoring campaign are described in detail elsewhere (Wei-
chenthal et al., 2015; Farrell et al., 2015). Briefly, winter UFP data
were collected using three separate vehicles (Chevrolet Grand
Caravans) driving for six hours a day (between 7:00-10:00 and
15:00-18:00) for 5 consecutive weekdays in March 2011. Time
periods were selected to capture peak ambient concentrations and
also to allow for time to download and process the data between
trips each day. Each vehicle focused on covering a different area of
the city including downtown areas, major highways, and suburban
areas; the spatial coverage of the winter monitoring campaign is
illustrated in Supplemental Fig. 1.

The bicycle monitoring campaign took place on 23 weekdays
during the months of June and July, 2012. All cycling took place
between 8:00-10:00 and 15:00-17:00. Two pairs of research as-
sistants used condensation particle counters (TSI CPC Model 3007)
affixed to bicycles to measure UFP concentrations along 25 routes
charted around the Island of Montreal. The routes were designed
to cover both downtown and suburban locations, urban canyons
and low built-up areas (i.e. areas with 2-3 storey buildings). Each
route was a circuit of approximately 25 km in circumference. The
extent of the network is presented in Supplemental Fig. 2. In total,
over 475 km of unique roadways were covered.

Ambient temperature and relative humidity data were col-
lected on mobile platforms at the same time as UFP data at
1-s resolution. Mean wind speed data were collected from the
nearest Environment Canada site and matched to the time of data
collection. All UFP and meteorological data were pooled and
averaged for each individual road segment.

2.2. Assigning ultrafine particle concentrations to road segments

All air quality data were matched with their respective GPS
coordinates based on the time-stamp of the recording (at a fre-
quency of 1 Hz). Every GPS reading coupled with a UFP level was
then associated with the road segment where the monitoring was
designed to occur based on the initial identification of daily tra-
jectories. A road segment is defined as a link between two suc-
cessive intersections; road segments had a mean length of 377 m
(interquartile range: 159-415 m). In the case of the cycling data,
points were also related with a non-motorized trail if it was ridden
on or alongside, as is the case when riding within parks. All UFP
data (i.e. from monitoring campaigns over both seasons) asso-
ciated with each road segment were averaged (i.e. by pooling data
from both surveys) and the number of GPS points or seconds as-
sociated with the mean UFP per segment was recorded. All

Table 1
Descriptive statistics for UFP con-
centrations (count/cm?).

Statistic UFP

Minimum 5689
10th percentile 14,165

First quartile 18,765
Mean (SD) 39,199 (34,582)
Median 26,497
Third quartile 48,236

90th percentile 83,762
Maximum 234,976

Data reflects a total of 414 road seg-
ments with at least 200 points/
segment.

analyses are based on mean UFP data assigned to road segments
over the entire monitoring campaign Moreover, both monitoring
campaigns were designed so that the distributions of visits across
days and time periods would remain relatively stable across
locations.

The number of data points available for each road segment
varied depending on the number of times it was traversed during
the mobile monitoring campaigns. All statistical analyses are based
on road segments with at least 200 points/segment (mean: 405
points/segment; interquartile range: 235-449) as this cut-off
provided the best balance of spatial coverage and points/segment.
As sensitivity analysis, a multivariable linear regression model was
also examined using road segments with at least 250 points/seg-
ment and this did not change the results (Supplemental
Table 3 and 4); therefore, we selected the lower cut-point to in-
crease spatial coverage (Tables 1 and 2).

2.3. Derivation of land use and built environment data for model
development

Each road segment was associated with a number of land-use
and built environment characteristics. These included variables
computed as distances between the mid-point of the road seg-
ment and potential sources of UFP (e.g. nearest highway, nearest
major road, nearest bus route, and Trudeau International Airport).
In addition, a number of land-use variables were computed within
buffers of sizes ranging from 100 to 300 m. These include: number
of bus stops, length of bus routes (in meters), length of rail lines,
number of restaurants, number of trees, length of expressways (in
meters), length of primary highways (in meters), length of sec-
ondary highways (in meters), length of major roads (in meters),
length of local roads (in meters), population density (number of
individuals/km?), number of trees, and proportion land occupied
by different land-use types (e.g. commercial, governmental/in-
stitutional, open areas, parks/recreational, residential, resource/
industrial, water body). The decision to limit buffers to a max-
imum of 300 m was based on the fact that UFPs are highly
dominated by local emissions occurring in the direct vicinity of
each sampling location. In addition, the magnitude of covariate
impacts on ambient UFPs tended to decrease with increasing
buffer sizes (Table 3).

In addition, we made use of prior research into a mesoscopic
traffic simulation model that was developed for the Greater
Montreal Area (Sider et al., 2013). The model generated outputs at
the level of the road segment for vehicular composition, volume,
and speed. In order to refine our measure of road traffic, we used
the output of the same traffic assignment model and transformed
traffic volumes, compositions, and speeds into a measure of daily
nitrogen oxide (NOy) emissions per road segment (in grams). In
order to calculate the NO, emissions potentially affecting each
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