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a b s t r a c t

Time series regression has been developed and long used to evaluate the short-term associations of air
pollution and weather with mortality or morbidity of non-infectious diseases. The application of the
regression approaches from this tradition to infectious diseases, however, is less well explored and raises
some new issues.

We discuss and present potential solutions for five issues often arising in such analyses: changes in
immune population, strong autocorrelations, a wide range of plausible lag structures and association
patterns, seasonality adjustments, and large overdispersion.

The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh
and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional
time series regression to infectious diseases and weather factors, we also briefly introduce alternative
approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving
average (ARIMA) models.

Modifications proposed to standard time series regression practice include using sums of past cases
as proxies for the immune population, and using the logarithm of lagged disease counts to control au-
tocorrelation due to true contagion, both of which are motivated from “susceptible-infectious-recovered”
(SIR) models. The complexity of lag structures and association patterns can often be informed by bio-
logical mechanisms and explored by using distributed lag non-linear models. For overdispersed models,
alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time
series regression can be used to investigate dependence of infectious diseases on weather, but may need
modifying to allow for features specific to this context.

& 2015 Elsevier Inc. All rights reserved.

1. Introduction

Time series regression (TSR) is widely used among environ-
mental epidemiologists to examine associations between en-
vironmental predictors and adverse health outcomes. The method
has been developed to evaluate the associations of air pollution
and weather with all-cause mortality or morbidity in places where
this is overwhelmingly due to non-infectious diseases (e.g. cardi-
ovascular diseases). More recently, TSR approaches from this tra-
dition have been applied to communicable diseases (Hashizume
et al., 2008; Jusot and Alto, 2011; Lin et al., 2013; Luque Fernandez
et al., 2009; Mangtani et al., 2006). However, the use of TSR in this

context is less well explored and raises some new issues (Imai and
Hashizume, 2015).

This article aims to discuss and present solutions to the most
important issues arising for studies using TSR models to in-
vestigate associations of weather with infectious diseases. Though
few of the issues we discuss are unique to infectious diseases, they
are posed in ways that require some adaptation of the approaches
developed for non-infectious diseases, and our main aim is to
describe such adaptations. We make reference to alternatives to
TSR that have also been considered from mathematical modeling,
signal processing, or econometric traditions in particular when
aspects of them can be incorporated into a TSR approach, but
those methods are not described in detail.

Where we propose solutions, we illustrate them using datasets
of influenza in Tokyo and cholera in Bangladesh (see Supplemental
material pages 2 and 7 for details of the data). These two infectious
diseases demonstrate short term immunity (or diseases with fre-
quent changes in antigenic strains or subtypes) and long term
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immunity respectively. These datasets are graphed in Fig. 1. Brief
summary results are presented in the main text. More detailed
results, R code, and the influenza data (the cholera data are not
public) are available in Supplemental material.

This article begins with brief summaries of the TSR model ty-
pically used for non-infectious diseases in environmental epide-
miology and a time series susceptible-infectious-recovery (SIR)
model from the mathematical modeling tradition. These are then
followed by five sections, each of which addresses an issue arising
in the application of TSR to infectious diseases, and a discussion.

1.1. Overview of the time series regression model

The traditional TSR analysis seeks to identify how measured
time-varying factors xt (e.g. temperature) explain variation in an
outcome series Yt , usually daily counts of disease occurrence. The
Poisson model is the most common TSR model, and can be pre-
sented as
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where f t( ) is a smooth function of time t designed to model and so
avoid confounding by season and long term trend, xt denotes an
observed time varying variable of interest such as temperature,
and , , p0{ }β β β are regression coefficients. Other measured risk

factors are denoted as zp t, . This model, in particular the choice of a
suitable time function f t( ), has been reviewed in a recent tutorial
paper (Bhaskaran et al., 2013). As in general in the TSR tradition,
Bhaskaran focuses on acute effects to non-infectious disease
outcomes.

1.2. Overview of the time series susceptible-infectious-recovery
model

A feature of infectious diseases is that survivors of the disease

are often immune to re-infection for some time. This causes po-
tentially rapid changes in the population susceptible to infection.
In particular, one possible explanation for the waning course of
epidemics after the peak is that the susceptible population is ex-
hausted, or at least, given herd immunity, susceptible contacts of
infected cases become too sparse for infection propagation.

The SIR model is based on this and other known mechanisms
for the dynamics of immunity and transmission among popula-
tion. When combined with time series data this approach is called
the TS-SIR (or sometimes TSIR) model. One variant of this model,
simplified from Koelle (Koelle and Pascual 2004; Koelle et al.,
2005), can be written in discrete time as
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where, Nt is the total population size, St is the number of suscep-
tible individuals, tθ is pathogen transmissibility at time t and tε is
multiplicative noise. α and γ are parameters associated with the
type of mixing between individuals. St is not observed, but esti-
mated from subtracting the sum of fractions of past incident cases
where fractions immune iκ are assumed to smoothly decline with
the intervening time step t i− :
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where m is the total duration of immunity (in time steps). At first
sight this seems quite different from the traditional TSR frame-
work, but taking logarithms and making a Taylor series approx-
imation (details in Koelle and Pascual (2004)) reveal a strong
similarity
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Koelle used this approach to estimate parameters t 1θ − for each
time point (smoothed and separated from the seasonal compo-
nent) and then considered associations with weather (and other
explanatory factors) in a second stage, but there seems no reason
why direct incorporation of explanatory variables in a single stage,
as in the TSR would not be possible. However, given the large
number of constrained parameters (the t 1θ − and iκ ), the complete
Koelle model does not quite fall within the traditional TSR fra-
mework, therefore we decided not to pursue it here, though this
approach may be an interesting subject for future research.

2. Topic 1: Immune population

The traditional TSR generally assumes that the population at
risk of the outcome under study is more or less constant; however,
as noted in the SIR overview above, immunity to infectious dis-
eases causes variation in the susceptible population. Unless al-
lowed for, such variations in the underlying population at risk may
bias estimates of the associations with the weather.

If the size of the susceptible population were known at each
time point, it could be allowed for in the model, but this in-
formation does not always exist. We review below some ap-
proaches to this problem. Choice of the approach is likely to de-
pend on the specific infectious disease, given the large variations
among infections in the duration of immunity.

2.1. Rely on smooth function of time to model changes in immunity

Much of the effect of changes in immune fractions of popula-
tions is often to induce seasonal and other long term variations of
diseases (Grassly and Fraser, 2006; Pascual and Dobson, 2005).

Fig. 1. (A) Weekly total influenza-like illness cases per sentinel medical facility in
Tokyo, 1999–2009. (B) Weekly total El Tor cholera cases from laboratory confirmed
infections from the hospital at ICDDR, B in Dhaka, Bangladesh, 1996–2008.
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