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a b s t r a c t

Background: Drinking water may contain pollutants that harm human health. The frequency of pollutant
monitoring may occur quarterly, annually, or less frequently, depending upon the pollutant, the pollutant
concentration, and community water system. However, birth and other health outcomes are associated
with narrow time-windows of exposure. Infrequent monitoring impedes linkage between water quality
and health outcomes for epidemiological analyses.
Objectives: To evaluate the performance of multiple imputation to fill in water quality values between
measurements in community water systems (CWSs).
Methods: The multiple imputation method was implemented in a simulated setting using data from the
Atrazine Monitoring Program (AMP, 2006–2009 in five Midwestern states). Values were deleted from the
AMP data to leave one measurement per month. Four patterns reflecting drinking water monitoring
regulations were used to delete months of data in each CWS: three patterns were missing at random and
one pattern was missing not at random. Synthetic health outcome data were created using a linear and a
Poisson exposure–response relationship with five levels of hypothesized association, respectively. The
multiple imputation method was evaluated by comparing the exposure–response relationships esti-
mated based on multiply imputed data with the hypothesized association.
Results: The four patterns deleted 65–92% months of atrazine observations in AMP data. Even with these
high rates of missing information, our procedure was able to recover most of the missing information
when the synthetic health outcome was included for missing at random patterns and for missing not at
random patterns with low-to-moderate exposure–response relationships.
Conclusions: Multiple imputation appears to be an effective method for filling in water quality values
between measurements.

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

The quality of drinking water provided by community water
systems (CWSs) is determined by periodic measurement of con-
taminants in the CWS's finished drinking water. Measurement
frequencies are specified in the National Primary Drinking Water
Regulations (NPDWR), promulgated by the US EPA under authority of
the Safe Drinking Water Act. Measurement frequencies vary among
contaminants, with contaminant concentration, and with features of
the CWS. Typically, water quality is measured quarterly, annually, or
once every several years. Drinking water quality data are contained
in the Safe Drinking Water Information System (SDWIS), and are
available to the public upon request from state agencies. Recently,
SDIWS data have been integrated into the Environmental Public

Health Tracking (EPHT) Network, which will increase their accessi-
bility to the public and researchers.

SDWIS data have been utilized in several epidemiological
studies in the United States (Rinksy et al., 2012; Ochoa-Acuna
et al., 2009; Ward et al., 2007; Weyer et al., 2001; Munger et al.,
1997), and similar data have been used in other countries (Migeot
et al., 2013; Chang et al., 2010; Villanueva et al., 2005). Since the
water quality measurements are relatively infrequent in a calendar
year, epidemiological studies have generally averaged data across
years and CWSs (Rinksy et al., 2012; Weyer et al., 2001) or
restricted the study population to metropolitan areas served by a
single CWS, with or without supplemental monitoring programs
(Munger et al., 1997; Ochoa-Acuna et al., 2009; Chang et al., 2010).
These approaches, however, have significant limitations that are
particularly difficult to overcome in EPHT applications.

The objective of EPHT is to utilize existing data collection
systems to survey and evaluate environmental health, including
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changes in environmental quality, population health and linkages
between environmental quality and health. In the EPHT framework,
supplemental targeted data collection is not feasible. For example,
additional water quality monitoring cannot be conducted to fill in
gaps between regulatory-required monitoring. Cohort epidemiolo-
gical studies require large populations, so the study cannot be
restricted to small areas with the most robust data without losing
power to detect associations. In addition, long-term averages may
introduce significant exposure misclassification in the context of
non-chronic health effects, such as adverse birth outcomes (e.g., low
birth weight or pre-term birth) for which the critical time-window
of exposure is measured in months (Rogers and Kavlock, 2008).
These limitations led us to consider statistical methods by which to
estimate drinking water quality between measurements.

The specific objective of this work is to evaluate whether multiple
imputation is a feasible approach for estimating water quality in each
calendar month when water quality is monitored quarterly, annually
or less frequently. Multiple imputation is one of many statistical
methods that can be used to fill in missing values, but was selected
for evaluation for two reasons. Firstly, there has been relatively limited
application and evaluation of the method for environmental data
(Hopke et al., 2001; Le et al., 2007; Nieh et al., 2014). Though previous
research has found multiple imputation to perform relatively well,
even in the absence of structured time-series imputation models for
time-series data (Hopke et al., 2001), the high frequency of missing
data in the context of monthly drinking water quality warrants further
evaluation. Secondly, multiple imputation has advantages relative to
single value imputations (e.g., mean value substitution) and common
likelihood-based methods (e.g., harmonic analysis or forecasting by
Becker et al., 2006; Dilmaghani et al., 2007; Weerasinghe, 2010) used
to fill in missing values in environmental data. Single-value imputa-
tions reduce variance in the water quality data: exploratory analysis in
these data found that filling missing observations with CWS-specific
annual average atrazine concentrations underestimated the exposure-
response association, evenwhen data are missing at random (data not
shown). A particular advantage of multiple imputation with respect to
likelihood-based methods is that the method identifies missing data
as a source of random variation distinct from ordinary sampling
variability, which maintains appropriately wide standard errors for
inference (Demirtas and Hedeker, 2007).

The specific multiple imputation method employed in this study
was Multivariate Imputation by Chained Equations (MICE) in which
unique imputation models are specified for each variable with
missing values and imputed sequentially (van Buuren, 2012). This
method of multiple imputation has not been previously applied to
environmental data, to our knowledge. The MICE algorithm is
implemented as follows (White et al., 2011). Consider a data set
with x1; x2;…xk variables. Initially, all missing values are replaced by
random sampling from observed values. For variable xi with missing
values, xi is regressed on the other variables using the specified

imputation model, and the missing values in xi are replaced by
draws from the posterior predictive distribution of xi. In one cycle,
this is repeated for all of the xi, i¼ f1;2;…; kg, variables with
missing values; and the cycle is repeated several times to produce
an imputed data set. This process is repeated m times, to give m
imputed data sets. MICE has the advantage of not requiring a joint
distribution, such that different types of variables can be multiply
imputed using appropriate regression models and subsets of the
variables.

The objective was approached through simulation. To allow the
performance of multiple imputation to be evaluated relative to
real data, the simulation was performed using data from the
Atrazine Monitoring Program (AMP), rather than from SDWIS.
The AMP is a special program managed by the US EPA, which
measures the concentration of atrazine in CWSs known to be
heavily impacted by atrazine approximately every two weeks.
There are thousands of CWS in the Midwest (Jones et al., 2014) of
which 90 CWSs in Illinois, Indiana, Iowa, Missouri and Ohio
participated in the AMP at some time during the years 2006–
2009. Owing to the relatively high-frequency of measurement in
the AMP CWSs, it was possible to create missing values by deleting
measurements in these data, and to compare inferences made
from multiply imputed data to inferences from the real data.

2. Methods

2.1. Atrazine Monitoring Program data

The AMP monitors the concentration of atrazine and related chemicals in CWSs
vulnerable to atrazine pollution. Data are available online from the EPA Office of
Pesticide Programs. The AMP continues monitoring campaigns conducted by
private companies and professional associations (Graziano et al., 2006). Participat-
ing CWSs monitor finished (treated) and raw (untreated) drinking water approxi-
mately every two weeks: frequency may increase in the spring and summer, and
decrease in the winter. In general, atrazine concentrations decrease over time
within each CWS, until the CWS is removed from the AMP. The AMP data include
the CWS name, and the county and state in which each CWS is located.

For the years 2006–2009, 90 CWSs in Illinois, Indiana, Iowa, Missouri and Ohio
ever participated in the AMP. Not every CWS participated in the AMP every year
2006–2009. The years 2006–2009 and CWSs in Midwestern states were selected
because they fall into the time period and geographical area of interest for our
larger study, and have consistent analytical detection limits in each CWS. During
this period, the AMP consistently included the agents atrazine, simazine, deethla-
trazine (DEA), and deisopropylatrazine(DIA). Simazine is a related pesticide, while
DEA and DIA are metabolites of atrazine and simazine. The limit of detection for all
chemicals in 2006 was 0.1 μg/L , and in 2007–2009 was 0.05 μg/L.

The AMP data were prepared as follows. Random deletion was used to retain
only one value in each calendar month for each CWS. In each calendar year, a CWS
was excluded if there were fewer than 6 months with observations; if 6–11 months
had observations rows were added to indicate missing values. As a result, there
were 289 CWS-years, and 143 rows (4.2%) with missing observations of chemicals
in finished water and 186 rows (5.4%) with missing observations in raw water. This
approach was taken because elimination of CWS-years with observations missing
in any month would reduce the data substantially, and introduce bias if the missing
observations were not missing at random.

The data used in the simulation study are summarized in Table 1. Lognormality
of the chemical concentrations is indicated by the high GSD values in Table 1, and
was confirmed by quartile–quartile plots (not shown). Many of chemicals are

Table 1
Summary of AMP data used in the simulation study. The geometric mean (GM) and
the geometric standard deviation (GSD) were estimated using the method of

maximum likelihood with consideration for censoring at detection limits 0.05 μg/L
(2007–2009) and 0.1 μg/L (2006).

Chemical
Water
Type

Estimated

Maximum

(μg/L) N
Percent
CensoredGM (μg/L) GSD

Atrazine Finished 0.159 4.29 17.8 3325 18
Atrazine Raw 0.338 4.10 34.0 3282 8
Simazine Finished 0.002 8.82 15.98 3325 68
Simazine Raw 0.048 7.89 21.6 3282 55
DIA Finished 0.034 4.30 2.51 3325 66
DEA Finished 0.062 3.39 2.20 3325 51

Table 2
Pearson's correlation of log-transformed chemical concentrations of AMP data used
in the simulation study. Atrazine and simazine were measured in finished (F) and
raw (R) drinking water. All correlation tests have po0:05.

Chemicals Atrazine-F Atrazine-R Simazine-F Simazine-R DIA DEA

Atrazine-F 1.00
Atrazine-R 0.70 1.00
Simazine-F 0.20 0.04 1.00
Simazine-R 0.11 0.12 0.57 1.00
DIA 0.44 0.24 0.47 0.40 1.00
DEA 0.72 0.49 0.18 0.08 0.47 1.00
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