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a b s t r a c t

Background: With the increased availability of spatial data and computing power, spatial prediction
approaches have become a standard tool for exposure assessment in environmental epidemiology.
However, such models are largely dependent on accurate input data. Uncertainties in the input data can
therefore have a large effect on model predictions, but are rarely quantified.
Methods: With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of
radio-frequency electromagnetic fields (RF-EMF) frommobile phone base stations at 252 receptor sites in
Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing
the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure
distribution) between modelled values and RF-EMF measurements performed at the receptor sites.
Results: The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of
1.5. Uncertainty in receptor site height, building damping and building height contributed most to model
output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites
were the most important sources of uncertainty, followed by building damping, antenna- and site
location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model
performance.
Conclusions: We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF
environmental exposure model, thereby identifying the most important sources of uncertainty and
estimating the total uncertainty stemming from potential errors in the input data. This approach can be
used to optimize the model and better interpret model output.

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

An important part of epidemiological studies is the exposure
assessment of the population to environmental pollutant(s). Tradi-
tionally, routine and purpose-designed monitoring have been used
to determine exposure levels (Briggs et al., 2009), but with the
increase in geographical data and modelling techniques, it has
become feasible to assess exposure for large populations using
spatial prediction models. Examples can be found in the modelling
of air pollution (Beelen et al., 2013; Jerrett et al., 2005), noise
(Murphy et al., 2009; Gan et al., 2012) and radio frequency electro-
magnetic fields (RF-EMF) (Bürgi et al., 2008; Beekhuizen et al., 2013).

However, even the most advanced models are by definition
simplified representations of reality and cannot predict true
exposure levels with 100% accuracy and precision. Spatial expo-
sure models consider the source of the pollutant and surroundings
to determine the strength and propagation of the exposure
through the environment. These models need accurate geographi-
cal as well as source-related input data, as uncertainty in the
inputs can have a large effect on the predictions (McIntyre et al.,
2002; Jacquemin et al., 2013; Ramsey, 2009). For an overview of
uncertainty analysis methods in exposure and risk assessment, we
refer to review papers by Ramsey (2009) and Briggs et al. (2009)
and more recently by Mesa-Frias et al. (2013).

Even though the effect of uncertainty in exposure modelling is
recognized by the research community as an important issue
(Briggs et al., 2009), uncertainty analyses are rarely applied in
environmental epidemiological studies. Uncertainty in environmen-
tal exposure models can be assessed with Monte Carlo simulation
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(Hammersley and Handscomb 1964). In Monte Carlo simulation, the
uncertainty in model outputs (i.e. the exposure estimates) is
derived by repeatedly sampling from probability distributions of
the model inputs. Monte Carlo simulation is easy to implement,
applicable to a wide range of models and results in an entire
probability distribution of the model output (Heuvelink, 1998).

There is a need for accurate exposure assessment of RF-EMF
from mobile phone base stations for epidemiological studies (IARC,
2013; HPA, 2012), as crude proxies of exposure are not sufficient to
prove or dismiss associations between RF-EMF and health effects.
The input data requirements for RF-EMF prediction models are
demanding, as detailed data on all mobile phone base stations and
buildings in the study area are essential inputs. Furthermore, as RF-
EMF levels can change rapidly at distances less than a few metres,
accurate positional information of the receptor site (e.g. the bed-
room of participants in an epidemiological study) is needed. There-
fore, errors in input data of RF-EMF models and receptor locations
can greatly affect model accuracy. As we do not know the actual
error, we assessed the uncertainty in RF-EMF modelling. It is
important to make this distinction, as error and uncertainty are
often used interchangeably. Error is the difference between the true
value and the modelled value, while uncertainty is the acknowl-
edgement of error by characterising the range of values within
which the true value is asserted to lie (Heuvelink et al., 2007).

We computed the total uncertainty in RF-EMF modelling
caused by uncertainty in model inputs using Monte Carlo simula-
tion, and assessed which inputs have the largest influence on the
model's ability to classify exposure by comparing model predic-
tions with measurements performed in Amsterdam, The Nether-
lands. The uncertainty analysis identifies input data sources that
should be prioritized for improving model performance and the
total prediction uncertainty caused by model inputs, indicating the
reliability and potential range of RF-EMF levels at all receptor sites.

2. Methods

2.1. Model description

We applied the NISMap model (Bürgi et al., 2008) to predict total downlink RF-
EMF exposure from mobile phone base stations. NISMap has been used previously
in studies in Switzerland and The Netherlands (Bürgi et al., 2010; Beekhuizen et al.,
2014a; Beekhuizen et al., 2013) and we refer to these studies for a detailed model
description. In short, NISMap is a spatial radio wave propagation model that
calculates the spread of radio waves from antennas in 3D space. NISMap considers
the properties of the source of radio waves (antenna location, height, direction, tilt,
output power and pattern), terrain height, the (simplified) physics of the radio
wave propagation (using a radio wave propagation algorithm, such as the Double
Powerlaw (ITU, 2009) and damping and diffraction of the wave by buildings.

2.2. Input data and validation measurements

We studied uncertainty in RF-EMF modelling for the urban area of Amsterdam,
The Netherlands, using measurement and input data from an indoor model
validation study (Beekhuizen et al., 2014a). Antenna data were obtained from the
three Dutch mobile phone network operators, 3D building data from Eurosense
(Wemmel, Belgium) and the Dutch national Digital Terrain Model (DTM) (Actueel
Hoogtebestand Nederland, AHN2). The total downlink RF-EMF from mobile phone
base stations was measured with an EME-SPY 140 device (SATIMO, France). We
collected 15-minute spot measurements in 263 rooms in 101 primary schools and
30 private homes in Amsterdam. We left 11 sites out of the analysis as they were
located at the outer edge of the city, which was not completely surrounded by the
original Amsterdam building data for which we built an uncertainty model.

2.3. Monte Carlo uncertainty propagation analysis

The first step in a Monte Carlo analysis is determining the probability
distribution function (PDF) of the model inputs. Next, the model is run for
N samples randomly drawn from these PDFs. Finally, the model uncertainty can
be inferred from the statistical evaluation and visualisation of the simulated model
outputs. The minimum number of necessary model runs was determined by

plotting the standard deviations of a batch of N simulations at each site against
the standard deviations of a second batch with as many model runs. If the resulting
uncertainties at each site for one batch of model runs are similar to those of the
second, the graph will show a high correlation, indicating that a sufficiently large
number of model runs has been used (Nol et al., 2010). For N¼200 simulations, we
found an acceptable R2 of 0.96 between the two sets. The Appendix shows a
scatterplot of the standard deviations of both sets.

2.4. Uncertainty in RF-EMF model inputs

To quantify uncertainty in input parameters we used (i) reference data to assess
errors in the data, (ii) information on uncertainty in the antenna input parameters
obtained through consultation with an expert on network planning and an expert
on network optimization from one of the Dutch network providers (July 2013), and
(iii) information on all uncertainty PDFs obtained through consultation at an expert
elicitation meeting with Alfred Bürgi (August 2013), the developer of NISMap and
an expert on its properties and inputs. The following uncertainty sources and PDFs
were selected:

2.4.1. Building height
The uncertainty in building height was estimated by computing differences

between heights in the Eurosense building data set with heights from an unfiltered
version of the high-resolution (0.5 by 0.5 m) DTM (AHN2) for three 1�1 km2 areas in
Amsterdam, containing over 900 buildings. The errors were truncated at �5 and 5 m
(2.3% of the errors), as errors45 m are likely caused by temporal changes in building
data between AHN2 and Eurosense, and thus do not indicate the height error in our
building dataset. Fig. 1 shows the obtained empirical error distribution, fromwhich we
sampled building height errors. If the simulated building height was smaller than 2 m,
we set the building height to 2 m (the minimum realistic building height). We
assumed that errors in building height are spatially correlated; i.e. we decided that it is
unrealistic to raise one building and lower a neighbouring building with the same
height and building age. We therefore created building clusters based on building
height, age and proximity to other buildings using the ArcGIS 10.2 Grouping Analysis
tool. Each building cluster is a group of buildings that have been built in a similar time
period, have a similar height and are located nearby each other. There were on average
20 buildings per cluster, but (depending on the cluster-criteria) the cluster size could
range from a few to hundreds of buildings.

2.4.2. Building damping
The degree of building damping can be set to different values for wall, roof and

inside. As the damping factor is dependent on many factors, such as wall material,
thickness, and incidence angle of the radio wave, the damping differs for each
building. However, NISMap has the limitation that damping factors can only be set
to one value for all buildings, restricting the simulation of damping values. Typical
Dutch home and school buildings are mostly made from bricks, thus we based our
damping parameters on values for bricks (BUWAL, 2002).

With the exception of high-performance heat-insulating windows, normal win-
dows are virtually transparent for RF-EMF. Therefore, the actual damping of walls can
be distinctly smaller; if the antenna is in direct line of sight of a room with a large
window, then there is little building damping. There is less variation for roof damping
as there are typically no windows on the roof. The inside damping factor is used to
predict the damping of the radio waves due to obstacles indoors, such as inside walls
and furniture, and can therefore greatly vary between buildings. We chose a normal

Fig. 1. Differences between building heights from a reference height data set
(AHN2) and building height dataset used in our modelling (Eurosense), for a total of
�900 buildings in three 1�1 km2 areas in Amsterdam, The Netherlands. The black
striped lines represent the 2.5 and 97.5 percentiles [�2.51 m; 2.98 m].
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