ELSEVIER

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Hair mercury concentration and fish consumption: Risk and perceptions of risk among women of childbearing age [☆]

Ling-Chu Chien*, Chi-Sian Gao, Hsing-Hua Lin

School of Public Health, Taipei Medical University, 250, Wu-Hsing Street, Taipei 110, Taiwan

ARTICLE INFO

Article history:
Received 22 June 2009
Received in revised form
14 September 2009
Accepted 1 October 2009
Available online 30 October 2009

Keywords:
Hair mercury concentration
Fish consumption
Women of childbearing age
Hazard quotient
Perceptions of risk

ABSTRACT

The purposes of this study were to assess the hair mercury concentration of women of childbearing age in Taiwan, and to calculate a hazard quotient (HQ) to evaluate the risk of fish consumption for these women. We also examined perceptions of risk associated with fish consumption and whether women in our study changed their habits in response to such risks. The average concentration of mercury was $1.73\pm2.12~\mu g~g^{-1}$ (range: $0.02-16.34~\mu g~g^{-1}$), exceeding the US EPA reference dose of $1~\mu g~g^{-1}$ in 52.9% of study subjects. The WHO tolerance limit of $10~\mu g~g^{-1}$ was exceeded in 1.5% of study subjects. Hair mercury concentration in groups who consumed fish was significantly higher than in groups who never consumed fish (p < 0.05). The hazard quotient (exposure estimate/oral reference dose) exceeded 1.0 for 1.2% of subjects, based on the US EPA's reference dose 1.2% of mercury that may be harmful for unborn babies, 1.2% of women still indicated that they would not change their amount of fish intake. The high hair mercury concentrations among women of childbearing age in Taiwan are a cause for concern, due to the effect on babies' brain development. The government should provide specific information about risks and benefits of fish consumption for women to make risk-balancing decisions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Mercury is distributed throughout the body by the blood stream and accumulates in fat or organs. Toxicity of mercury varies according to its different chemical forms. It can easily enter the human body through the respiratory or digestive tracts to accumulate in the body. Mercury is neurotoxic to humans and can be fatal (WHO, 1990). Methylmercury has lipophilic characteristic which means it penetrates the blood-brain barrier to the central nervous system (CNS) (Aschner et al., 1992). A high proportion of the methylmercury (MeHg) in the human body (98%) accumulates in the brain, posing great hazard to the CNS, especially in developing fetuses. Therefore, it is considered toxic to human beings. The period of gestation in which the CNS develops is most susceptible to MeHg poisoning. Thus exposure to MeHg in this period poses particular hazards for developing infants, as it disturbs the normal development of nerves and organs (Choi et al., 1978). Previous studies have indicated that organic mercury and elemental mercury have similar effects on a fetus' brain (Warfvinge, 1999). Both forms easily penetrate the placenta, whereas inorganic mercury does not (Mansour et al., 1973;

Clarkson, 1997; NAP, 2000). Mercury and other toxins enter the fetus' body through the placenta, a fact that has drawn greater attention to women's health issues worldwide.

A fish diet is considered the primary pathway of human exposure to MeHg, resulting in statistically significant differences between high and low fish consumption groups (Foo et al., 1988; Oskarsson et al., 1994). In particular fields, occupational exposure may also contribute to the mercury burden, affecting specific subgroups of a population. Sex is one of the important variables influencing the mercury content of hair; one study found that males had higher hair mercury concentrations than females in a Japanese population (Nakagawa, 1995). But women play a unique role in bearing the next generation. Neurodevelpomental problems during the last two trimesters are evident in children of mothers exposed to high MeHg levels. In the United States, the National Health and Nutrition Examination Survey (NHANES) found that hair mercury levels were increased three-fold for women and two-fold for children among frequent consumers of fish compared with non-consumers (McDowell et al., 2004). In 2004, the US EPA and US FDA warned women who were planning to conceive, pregnant or breast-feeding, as well as their children to avoid consuming tilefish, king mackerel, swordfish and shark. These fishes have mercury concentrations exceeding $1 \mu g g^{-1}$, which may produce adverse health effects (US FDA, 2004).

Mercury concentrations in blood and hair have been widely used as biomarkers for human mercury exposure. The normal

 $[\]ensuremath{^{\,\circ}}$ The Institutional Review Board of Taipei Medical University approved the study (P950045).

^{*} Corresponding author. Fax: +886 2 27384831.

E-mail address: lcchien@tmu.edu.tw (L.-C. Chien).

ratio of mercury in hair ($\mu g g^{-1}$) and blood ($ng l^{-1}$) is 190:1. In the absence of acute exposure, mercury levels in hair are much higher than in the blood, the ratio rising to 370:1 (Phelps et al., 1980; Shrestha and Fornerino, 1982). Hair is a good indicator for evaluating the mercury accumulation in the body. The growth rate of hair (1 cm per month) and the tendency of toxins such as mercury to accumulate in hair make it possible to estimate longterm exposure (Díez et al., 2008). Around 85% of the total mercury in hair is organic mercury, which may have adverse health effects when the level is higher than $10-20 \mu g g^{-1}$ (WHO, 1990). Studies focused on people who like consuming tuna revealed the median mercury level in their hair to be 9.6 μ g g⁻¹ (range: $1.4-34.5 \, \text{ug g}^{-1}$) (Carta, 2002), Davidson et al. (1998) investigated pregnant women in the Seychelles and found the average concentration of MeHg in hair was $6.8 \,\mu\mathrm{g}\,\mathrm{g}^{-1}$ in the year 2000. Pregnant British women have been found to have total mercury concentration in hair of $0.39 \, \mu g \, g^{-1}$ in 2001 (Razagui and Haswell, 2001).

In our previous study, we investigated mercury levels of blood in pregnant women and found that in 89% of cases (n=65), the mean levels ($9.1 \pm 0.4 \ \mu g \ l^{-1}$) exceeded the US National Research Council (US NRC) recommended limit of 5.8 $\mu g \ l^{-1}$ (Schober et al., 2003; Hsu et al., 2007). In 2005, a study in Taiwan revealed that the average hair mercury concentration of 46 dentists (3.94 $\mu g \ g^{-1}$) was 1.6 times higher than in the public (2.40 $\mu g \ g^{-1}$) (Taiwan EPA, 2005). Dentists are most likely being exposed to mercury vapor from amalgams used for dental fillings.

To our knowledge, few studies have examined the mercury of body burden fish consumption and perceptions of risk among women of childbearing age in Taiwan. The purposes of this study were to assess the total hair mercury concentration of women of childbearing age in relation to fish intake. In order to assess mercury exposure, we calculated and validated a hazard quotient (HQ) to evaluate the risk from fish consumption. We also examined the perceptions of risk associated with fish consumption and whether women in our study have changed their habits in response to that risk.

2. Materials and methods

2.1. Hair samples collection and questionnaires

This study collected 263 hair samples from four different groups (college students n=75, the general public n=63, dental workers n=83, and medical workers n=42) from 1 January 2007 to 28 February 2008 in Northern Taiwan, and investigated their lifestyles, dietary habits, living environments and basic demographic information by questionnaire. The volunteers were recruited through written announcements that were distributed through the Taipei Medical University website, dental association, and county health bureau. Written informed consent was obtained from all study participants. Approximately 2-cm hair samples were collected from the occipital area of scalp using stainless steel surgical scissors by a trained interviewer. Samples were stored in polythene bags for mercury analysis in the next 3 weeks. The Institutional Review Board of Taipei Medical University approved the study (P950045).

2.2. Determination of total mercury concentration in hair

Hair samples were rinsed three times with distilled deionized water after washing with a neutral detergent. After drying it in the shade under a hood, hair samples of 0.1 g were weighed out. The weighed hair was digested for 3 h with 5 mL of 65% strong nitric acid and 0.1 g $\rm K_2S_2O_8$ in 90 °C. After digestion, we diluted samples with 2% nitric acid to 50 mL and preserved it in 4 °C for analysis. Mercury concentrations were determined with a mercury analyzer (HG-200; Hiranuma, Mito, Japan). Each sample was analyzed in triplicate. Certified reference material from the Shanghai Institute of Nuclear Research, China (GBW09101) was used to perform a standard material test to ensure the precision and accuracy of the hair analyses. The precision values for the material was 96.3% and the accuracy value was 5.3%. The detection limit for mercury analysis was 5 ng g $^{-1}$.

2.3. Estimating the hazard quotient

Information on dietary intake of fish was obtained by questionnaire. The method of estimating the HQ from the US EPA (1989) was used to analyze the health risk to women of childbearing age. The individual HQ was the ratio between the exposure and the reference dose. The following equation was used:

$$HQ = \frac{C_{mi} \times IR_i}{RfD \times BW_i}$$

where C_{mi} is the geometric mean of the mercury concentration in fish ($\mu g g^{-1}$), lR_i the ingestion rate of fish ($g d^{-1}$), RfD the US EPA's reference dose (0.1 $\mu g Hg kg bw^{-1} d^{-1}$) or acceptable daily intake determined by WHO (0.23 $\mu g Hg kg bw^{-1} d^{-1}$); BW_i the individual's body weight (kg).

Individual calculations were based on fish species consumed, mercury concentration, and fish consumption rate, divided into five categories: never, $<1,\,1–2,\,3–5,\,>5$ meals/week. The quantity of fish was established according to the form of consumption: a fish cutlet up to 120 g constituted one serving. Mercury concentrations of various species of fish have been published in our previous study (Chien et al., 2007). For example, one woman had a body weight of 50 kg and ate milkfish, hairtail, and salmon, with a fish consumption rate of <1 meals/week. The calculation based on the data for the ingestion rate of fish is $8.7\,\mathrm{g}\,\mathrm{d}^{-1}$. The geometric mean of the mercury concentration of the edible portions of three fish is $0.052\,\mu\mathrm{g}\,\mathrm{g}^{-1}$. Thus

$$HQ = \frac{0.052 \times 8.7}{0.1 \times 50} = 0.09$$

For non-carcinogenic effects, an HQ exceeding 1.0 indicated a potential health risk.

2.4. Statistical analysis

Our data was not normally distribution, therefore we used non-parametric statistical methods, Wilcoxon Rank sum test and the Kruskal–Wallis test to test the differences in mercury concentration in hair caused by variation in age, lifestyles and diet. Spearman correlation coefficients were used to compare the relationship of height, weight, BMI, age, tooth-fillings, fish consumption and mercury levels in hair. All statistical analyses were conducted using SAS 9.0 for Windows. Results were considered significant in a two-tailed test if p < 0.05.

3. Results

3.1. Demographic characteristics of participants

Demographic characteristics of the 263 study subjects and their frequency of fish and sashimi consumption are summarized in Table 1. The average age was 31.3 ± 10.7 years old. Fish consumption was 1-2 meals per week in 34% of the study sample, ≥ 3 meals per week in 30%, and 74% reported less than 1 meal per week of sashimi per week. Occupational exposure to mercury was found among 64% of the women and only 9% had > 5 tooth-fillings with amalgam.

3.2. Hair mercury concentrations and fish consumption

The distribution of mercury concentration in hair is shown in Fig. 1; the average concentration was $1.73 \pm 2.12 \,\mu g \,g^{-1}$ (range: $0.02\text{--}16.34~\mu g~g^{-1}).$ Hair mercury concentrations exceeded the US EPA reference dose of 1 μ g g⁻¹ in 52.9% of study subjects, and 1.5% of study subjects had levels higher than the tolerance limit of $10 \mu g g^{-1}$ declared by WHO (WHO, 1990). Of our 263 subjects, 125 were employed in medical-related careers (83 dental workers and 42 medical workers). They had two times the geometric mean hair mercury concentration of the general public, with medical workers showing the most severe exposure (Fig. 2; dental workers: 1.16 μ g g⁻¹; medical workers: 1.79 μ g g⁻¹; general public: $0.82 \,\mu g \, g^{-1}$). Compared to observations from the same age group, the dental workers had higher hair mercury concentrations than the general public, in common with other research results (Taiwan EPA, 2005; Zolfaghari et al., 2007). We explore the association between age, rate of fish consumption, and the mercury concentration of hair in the study population. According to our results, there was a statistically significant association between age and hair mercury

Download English Version:

https://daneshyari.com/en/article/6353427

Download Persian Version:

https://daneshyari.com/article/6353427

<u>Daneshyari.com</u>