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a  b  s  t  r  a  c  t

Irrigation  scheduling  tools are  critical  to allow  producers  to effectively  manage  water  resources  for  crop
production.  To  be useful,  these  tools  need to be accurate,  complete,  and  relatively  reliable.  The current
work  presents  an  uncertainty  analysis  and  its results  for the  Mississippi  Irrigation  Scheduling  Tool  (MIST)
model,  showing  the  margin  of error  (uncertainty)  of  the resulting  irrigation  advice  arising  solely  from  the
propagation  of measurement  uncertainty  through  the MIST  calculations.  The  final  relative  uncertainty  in
the water  balance  value  from  MIST  was  shown  to  be around  9%  of  that  value,  which  is in  the  normal  range
of the  margin  of error  and  acceptable  for  agronomic  systems.  The  results  of  this  research  also  indicate  that
accurate  measurements  of  irrigation  and  rainfall  are  critical  to minimizing  errors  when  using MIST  and
similar scheduling  tools.  While  developed  with  data  from  Mississippi,  the  results  of  this  uncertainty  anal-
ysis are  relevant  to similar  tool  development  efforts  across  the  southern  and  southeastern  United  States
and  other  high-rainfall  areas,  especially  for locations  lacking  high-quality  co-located  weather  stations.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Irrigation scheduling is a method of applying water for irrigation
of crops based on calculated crop water needs. It improves
water management while maximizing crop yields. Modeling and
simulation of irrigation requirements to ensure effective water
management has been employed in many regions, and a num-
ber of irrigation schedulers have been developed (Cancela et al.,
2006; Dağdelen et al., 2006; Fortes et al., 2005; Grassini et al., 2011;
Popova and Pereira, 2008). The Mississippi Irrigation Scheduling
Tool (MIST) was designed for the needs of producers in the Missis-
sippi River Valley Alluvial Flood Plain, a region colloquially known
as the Delta (Sassenrath et al., 2013a). Continued and expanding
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reliance on ground water for irrigation by crop producers has
begun to deplete the alluvial aquifer in the Delta, imperiling future
availability of groundwater resources (Powers, 2007). To provide
accurate irrigation scheduling for this area, MIST uses daily weather
data to calculate the evapotranspiration using standard equations
(Allen et al., 2006), and determines daily soil water balance using a
checkbook method (Andales et al., 2011).

As with all models, there are differences between in-field real-
ity and model results. Simplifying assumptions useful in models
for one region and a specific crop are frequently not appropriate
in other regions or for different crops. Therefore, it is necessary
to adjust any model to regional climate and crops, and to exam-
ine the accuracy of model predictions. Several researchers have
evaluated and measured uncertainty in other irrigation scheduling
systems (Burt et al., 1997 and Molden et al., 1990), and Chaubey
et al. (1999) examined the uncertainty due to regional rainfall.
Allen et al. (2011) researched common uncertainty errors aris-
ing from measurements of evapotranspiration, and Snyder et al.
(2015) proposed improvements on estimates of evapotranspiration
to account for microclimates. Pereira et al. (2015) also investigated
and updated formulations of crop coefficients and estimates of
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evapotranspiration to improve accuracy. Popova et al. (2006) vali-
dated their irrigation modeling system for crops and conditions in
Bulgaria. Prats and Picó (2010) performed a similar type of uncer-
tainty analysis of the irrigation scheduling model, using aMonte
Carlo method where the uncertainties of the various parameters
were considered. Monte Carlo type analysis is useful for analyzing
the statistical inference between parameters, but it is computa-
tionally expensive due to the convergence test, which requires
significant sampling from random distribution and calculation of
the equation. Therefore, this method is difficult to use for deci-
sion making tools such as an irrigation scheduling tool from a
practical standpoint. On the other hand, Taylor series method, the
mathematical technique that we use in this manuscript, includes
analytical derivations so that the solutions can be obtained through
computationally inexpensive calculations.

In this study, we focused on determining the uncertainty of
MIST predictions by calculating the propagated uncertainties of
input data through the underlying model, one aspect of overall
validation of the MIST model. All observational data have mea-
surement and observational uncertainties, and complex sequences
of calculations can in some cases result in very large uncertain-
ties in the final number (prediction). Previous research examined
potential inaccuracies in the weather database used in the water
balance calculations and irrigation decision (Sassenrath et al.,
2012), and the spatial variability of rainfall patterns (Sassenrath
et al., 2013b). Uncertainty analysis quantifies the degree of error
arising from uncertainties in input data (typically measurement
uncertainties) during the model calculations. The standards for
determination of uncertainty analysis are based in quality assess-
ment methodologies and guidelines developed and revised over
time by consortiums of researchers and engineers (e.g., BIPM, 2008;
AIAA Standard, 1995). Coleman and Steele (2009) further refined
the uncertainty methodology, delineating uncertainties into those
that are caused by variability (random) and those that are not (sys-
tematic), and their approach is the basis of this analysis.

Herein we examine the uncertainty in all equations and other
parameters used by MIST in the calculation of the water balance.
We compare the calculated values with trends, and then evaluate
the uncertainty associated with all the parameters in the water bal-
ance modeling. This gives us an indication of the sources of errors
in the measured parameters used in the daily water balance cal-
culations and the contributions of the error sources to the total
uncertainty of the daily water balance. This information will be used
in subsequent studies to validate the model against soil moisture
measurements. The following sections describe the uncertainty
analysis methodology (Section 2), the results and discussion
(Section 3) deduced from the uncertainty analysis of the MIST
web-based application, and conclusions (Section 4) of the current
research.

2. Methodology

2.1. Crop growth and data collection

Three crops (corn, Zea mays, cotton, Gossypium hirsutum, and
soybean, Glycine max) were grown with common production and
irrigation practices, and critical data was recorded and quality
assured for use in the uncertainty calculations. Crops were grown
at the USDA-ARS Mechanization Farm near Stoneville, MS  from
2005 to 2012 using standard agronomic practices for several dif-
ferent planting dates. Plant measurements included emergence
date, growth stage, leaf area index and yield. Plant growth was
assessed as plant height and plant growth stage based on published
stages of development; leaf area index was measured with a LAI
Plant Canopy Analyzer (LiCor, Lincoln, NE). Alternatively, canopy

development was  measured as percent of incoming sunlight inter-
cepted by the crop canopy using a light bar (LiCor, Lincoln, NE). Yield
from small plots was measured at harvest by weight, and on large
plots or production farms by using yield monitors on commercial
scale harvesting equipment. Soil nutrient and textural composition
were analyzed at the Mississippi State University soil testing lab.
Soil water content was  measured near the rooting zone through-
out the growing season using Watermark Soil Moisture Sensors
(Irrometer, Inc., Irvine, CA) placed at 15 cm increments to a depth
of 1 m.  The Watermark sensors measure soil water tension as resis-
tance changes in a solid state electrical resistance sensing device
embedded in a granular matrix. Additional measurements were
made in production fields in 2010, 2011 and 2012 in collaboration
with cooperating producers.

Weather parameters were downloaded from the Mississippi
Delta Weather Center network of weather stations as previ-
ously described (Sassenrath et al., 2012). Measured weather
parameters were tested for accuracy and used to calculate daily
reference evapotranspiration rates according to the modified
Penman–Monteith method (Allen et al., 2006) in an Excel spread-
sheet (Microsoft, Inc.). Crop coefficients were developed from
measured crop growth parameters (plant height, leaf area, and per-
cent light interception) as described in Sassenrath et al. (2013a)
and Allen et al. (2006). The MIST daily soil water balance was  deter-
mined for each research and production field using a water balance
method (Allen et al., 2006; Andales et al., 2011). All measured, cal-
culated, and constant input parameters for the soil water balance
calculations are given in Table 1.

2.2. Uncertainty methodology

Uncertainties in a measured variable can arise from a variety
of sources such as an imperfect instrument calibration process,
incorrect standards used for calibration, or influence on the
measured variable due to variations in ambient temperature, pres-
sure, humidity and vibrations. Uncertainties can also result from
unsteadiness in an assumed “steady-state” process being mea-
sured, and undesirable interactions between the transducers and
environment (Coleman and Steele, 2009). The uncertainties that
arise due to variability or randomness of a measured quantity
(such as water balance on a given day) are referred to as random
standard uncertainty. Uncertainties that do not arise from random
variability are called systematic standard uncertainty. The system-
atic uncertainty can include calibration (bias), data acquisition, data
reduction, or conceptual errors.

The systematic standard uncertainty can be calculated either
through Taylor’s Series Method (TSM) or Monte-Carlo Method
(MCM). With TSM, the uncertainty Ux can be calculated through
a root sum of random uncertainty sx and systematic uncertainty as
specified by Coleman and Steele (2009):

Ux = �
√

s2
x + b2

x (1)

where � is the normalized deviation from the mean value for a
standard Gaussian distribution.

P(�) = 1√
2�

∫ �

−�

e−�2/2d� (2)

For example, for P(�) = 0.95 or 95% of the confidence, � is
approximately 2 and for P(�) ≈ 0.68 or 68% of the confidence, � is
approximately 1. Here, we  use � = 2 for 95% confidence so that the
true value of wt, for any given day in the calculations, is expected
to lie within the bounds of 95% of the time. Similar to Eq. (1),
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