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a b s t r a c t

It is of great interest to elucidate underlying mechanisms to maintain stability of anaerobic digestion, an
important process in waste treatment. By operating triplicate anaerobic digesters continuously for two
years, we found that microbial community composition shifted over time despite stable process per-
formance. Using an association network analysis to evaluate microbial interactions, we detected a clear
successional pattern, which exhibited increasing modularity but decreasing connectivity among mi-
crobial populations. Phylogenetic diversity was the most important factor associated with network to-
pology, showing positive correlations with modularity but negative correlations with network
complexity, suggesting induced niche differentiation over time. Positive, but not negative, correlation
strength was significantly related (p < 0.05) to phylogeny. Furthermore, among populations exhibiting
consistent positive correlations across networks, close phylogenetic linkages were evident (e.g. Clos-
tridiales organisms). Clostridiales organisms were also identified as keystone populations in the networks
(i.e., they had large effects on other species), suggestive of an important role in maintaining process
stability. We conclude that microbial interaction dynamics of anaerobic digesters evolves over time
during stable process performance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Widely applied in wastewater treatment and animal waste
management, anaerobic digestion is an important microbial pro-
cess in waste treatment and renewable energy recovery (Aydin
et al., 2015a; Talbot et al., 2008; Zhang et al., 2011). Therefore, it

is crucial to understand the ecology and function of microbial
communities involved in anaerobic digestion. With the develop-
ment and application of molecular microbial ecology techniques,
progress has recently been made to characterize microbial com-
munity compositions in anaerobic digestion processes (Narihiro
and Sekiguchi, 2007). For example, Aydin et al. (2015b, 2016)
showed that changes in microbial community composition led to
altered biodegradation capacity of organic waste and antibiotics
during anaerobic digestion, which linked microbial community
compositions to the function of anaerobic digesters. However, more
studies are needed that focus on the potential interactions among
microbial populations at the whole community level, which is ex-
pected to contribute more to system functions than individual
populations (Ma et al., 2016).

Microorganisms live within complicated networks through a
multitude of interactions, such as mutualism and competition
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(Faust and Raes, 2012). However, most of those interactions among
microbial populations cannot be directly observed, representing a
great challenge for studying population interactions in microbial
communities. Network analysis has been used to deduce potential
interactions among microbial populations by uncovering strong,
non-random associations (Faust et al., 2012). It has been applied to
examine complex microbial communities in various habitats, such
as oceans (Chow et al., 2014), soils (Barber�an et al., 2012), human
microbiomes (Faust et al., 2012) and bioreactors (Ju and Zhang,
2015). In addition, network analysis is capable of revealing
changes in the topology of microbial networks (Deng et al., 2015;
Zhou et al., 2010, 2011). Therefore, network analyses have been
considered as powerful tools for studying population interactions
in complex microbial communities (Lupatini et al., 2014).

Various approaches of network analyses have been developed
and widely applied in functional genomics studies based on gene
expression data, including differential equation-based network
methods, Bayesian network analyses, and relevance/association
network methods (Deng et al., 2012). Among them, the association
network method based on co-occurrence/correlation is the most
commonly used, owing to its computational simplicity and noise
tolerance (Gardner and Faith, 2005). However, most studies
employing association network analyses use arbitrary thresholds,
thus compromising the constructed networks with subjectivity. To
address this, a random matrix theory (RMT)-based approach was
developed to objectively identify a threshold for network con-
struction based on microarray data or high-throughput sequencing
data (Luo et al., 2006, 2007). This approach was shown to be
effective in identifying network interactions among microbial
populations (Deng et al., 2012, 2015; Zhou et al., 2010, 2011).

Process stability is highly desirable during anaerobic digestion
processes. Previous efforts have primarily focused on the roles of
individual populations in process stability, especially on metha-
nogens (Chen and He, 2015; Sekiguchi, 2006). Owing to the
importance of microbial interactions in system functions (Ma et al.,
2016), herein we evaluated microbial population interactions by
performing network analysis of the microbial communities in
anaerobic digesters operated continuously for two years. A clear
successional pattern was identified, exhibiting increasing modu-
larity but decreasing connectivity between populations over time.
Furthermore, microbial phylogenetic diversity was found to be the
most important factor associated with network topology, indicative
of induced niche differentiation over time.

2. Material and methods

2.1. Anaerobic digester operation and biomass sampling

Triplicate mesophilic continuous anaerobic digesters, desig-
nated as C1, C2 and C3 hereafter, were established and operated
with dairy waste as the substrate as previously described (Chen and
He, 2015). All anaerobic digesters had aworking volume of 3.6 L and
were operated at a constant temperature of 35 �C. The hydraulic
retention time was maintained at 20 days and the organic loading
rate (OLR) was kept at 1.0 g volatile solids (VS)/L/day throughout
the two-year study period. Process performance remained stable
throughout the study period and biomass samples were collected
from the digesters periodically, resulting in a total of 156 samples
from 52 time points. All samples were stored at �80 �C before use.
The detailed sampling points and process performance parameters
are summarized in Supplementary Table S1.

2.2. Acquisition and processing of 16S rRNA gene sequences

DNA was extracted from biomass samples using previously

described protocols (Ma et al., 2015). Briefly, biomass samples were
suspended in 630 mL DNA-extraction buffer, followed by treatment
with 60 mL of a lysozyme mixture (37 �C, 60 min), 60 mL of a pro-
tease mixture (37 �C, 30 min), and 80 mL of 20% sodium dodecyl
sulfate (37 �C, 90 min). The treated sample suspension was sub-
sequently extracted with phenolechloroformeisoamyl alcohol
(25:24:1) at 65 �C for 20 min and the supernatant was extracted
using chloroformeisoamyl alcohol (24:1). DNA extract was then
mixed with 0.6 volume of isopropanol and stored at 4 �C overnight.
DNAwas obtained by centrifugation followed by washing with 70%
cold ethanol, drying and resuspension in nuclease-free water. DNA
concentration and purity were analyzed with a NanoDrop spec-
trophotometer (NanoDrop Technologies Inc., Wilmington, DE,
USA). The V4 region of microbial 16S rRNA genes was amplified by
primer pairs (Wu et al., 2015), 515F (50-GTG CCA GCM GCC GCG
GTA A-30) and 806R (50-GGA CTA CHV GGG TWT CTA AT-30). PCR
was performed at 94 �C for 1 min; 35 cycles of 94 �C for 20 s, 53 �C
for 25 s, and 68 �C for 45 s; and a final extension at 68 �C for 10 min
using the AccuPrime High Fidelity Taq Polymerase (Invitrogen,
Grand Island, NY, USA). PCR products were pooled and purified
using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA)
and amplicon sequencing was performed with the Miseq Illumina
platform at the Institute for Environmental Genomics (IEG), Uni-
versity of Oklahoma.

For sequencing data analysis, the primer sequences were trim-
med from the paired-end sequences, which were then merged
using FLASH. Merged sequences were processed to generate oper-
ational taxonomic units (OTUs) by UPARSE at the 97% sequence
similarity threshold. Taxonomy was assigned with a confidence
cutoff of 50% using the RDP classifier. Phylogenetic trees were then
constructed from all representative sequences using the FastTree
algorithm (Price et al., 2009). The phylogenetic distance between
OTUs was then determined by their relatedness in the phylogenetic
tree with function cophenetic in R picante package. The rRNA gene
copy number for each OTU was estimated with the rrnDB database
(Stoddard et al., 2014). The OTU matrices were rarefied to 11,558
sequences per sample. The abundance-weighted average rRNA
gene copy number was then calculated for each sample.

2.3. TaqMan qPCR analysis

TagMan qPCR analyses were performed with triplicate biomass
samples at 15 time points (Day 45, 73, 90, 111, 121,132, 146, 167, 251,
289, 326, 347, 395, 453 and 501). Genus-specific TaqMan qPCR
assays were used to quantify the populations of Methanosarcina
andMethanosaeta. To determine the relative abundance of the both
methanogens in the archaeal community, a domain-specific Taq-
Man qPCR assay was performed to quantify total archaeal pop-
ulations. The characteristics of TaqMan primer/probe sets used in
this study were summarized in Table S2, and the qPCR procedure
was performedwith a CFX96 Real-Time PCR Detection System (Bio-
Rad, Hercules, California, USA) as previously described (Chen and
He, 2015). In brief, the qPCR assays were performed in 25 mL re-
action volumes with 15 pmol primers, 5 pmol probe, and Brilliant II
QPCR Master Mix (Agilent, Santa Clara, California, USA). The ther-
mal cycling was started by an incubation at 50 �C for 2 min and an
initial denaturation at 95 �C for 10 min, followed by up to 45 cycles
at 95 �C for 30 s and 60 �C (for all primer/probe sets) for 45 s.

2.4. Network construction

To construct a time-lag network, it is desirable to use a mini-
mum of 12 samples with consistent time intervals between sam-
ples. We fit our time-series data to this criteria by categorizing
samples into 9 operational intervals according to sampling time: 1)
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