Water Research 83 (2015) 258-270

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor

Eliza Harris ^{a, *}, Adriano Joss ^b, Lukas Emmenegger ^a, Marco Kipf ^b, Benjamin Wolf ^{a, c}, Joachim Mohn ^a, Pascal Wunderlin ^b

^a Laboratory for Air Pollution and Environmental Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
^b Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
^c Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany

A R T I C L E I N F O

Article history: Received 12 September 2014 Received in revised form 25 March 2015 Accepted 25 June 2015 Available online 2 July 2015

Keywords: Nitrous oxide Isotopic composition Laser spectroscopy Nitrifier denitrification Process control

ABSTRACT

Nitrous oxide (N₂O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N₂O with quantum cascade laser absorption spectroscopy (QCLAS). N₂O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N₂O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N₂O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N₂O emissions.

Under normal operating conditions, the N₂O isotopic site preference (SP) was much higher than expected – up to 40% – which could not be explained within the current understanding of N₂O production pathways. Various targeted experiments were conducted to investigate the characteristics of N₂O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N₂O reduction, ii) unknown inorganic or anammox-associated N₂O production pathway, iii) previous underestimation of SP fractionation during N₂O production from NH₂OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis – an unknown or incompletely characterised production pathway – was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N₂O production pathways in PN-anammox systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, interest in wastewater treatment with anaerobic ammonium oxidizers (anammox) has increased, resulting in significant technological developments (van der Star et al., 2007; Joss et al., 2009, 2011; Imajo et al., 2004; Fernández et al., 2008; Gilbert et al., 2013), as the process offers the potential for reductions of >50% in energy consumption compared to traditional nitrification—denitrification, without decreasing nitrogen removal efficiency (Siegrist et al., 2008). The anammox reaction, which involves

* Corresponding author. E-mail address: eliza.harris@empa.ch (E. Harris). conversion of nitrite (NO_2^-) and ammonium (NH_4^+) to form N₂, plays an important role in a diverse range of artificial, marine and terrestrial environments (Mulder et al., 1995; Thamdrup and Dalsgaard, 2002; Kuypers et al., 2003, 2005; Vymazal, 2007). Wastewater treatment with anammox involves partial nitritation (PN), where ~50% of NH₄⁺ is first oxidised to NO₂⁻ by ammonia oxidizing bacteria (AOBs) under oxic conditions, coupled to the anoxic anammox reaction to produce N₂. As an organic carbon source is not required, PN-anammox is particularly suited for the treatment of high NH₄⁺, low carbon wastes, such as digester liquor from conventional wastewater treatment.

For process stability in single-reactor PN-anammox systems, it is critical to balance AOB and anammox activity while minimising growth of nitrite-oxidising bacteria (NOBs). This is achieved by

Table 1

Known N₂O production and consumption pathways that may be occurring in a partial nitritation-anammox reactor, and the site preference and ¹⁵N fractionation factors associated with the pathways. $AOB = NH_4^+$ oxidizing bacteria, HET = heterotrophic denitrifiers.

Pathway	Population	Reaction	Site preference (‰)	$\Delta \delta^{15}$ N (‰)
NH ₂ OH oxidation	AOB	$NH_2OH \rightarrow NO \rightarrow N_2O^a$	30 to 36 ^b	-37 to -17 ^{c,d}
Nitrifier denitrification	AOB	$NO_2^- \rightarrow NO \rightarrow N_2O^a$	-10 to $0^{b,e}$	–68 to –30 ^{b,c,d}
NO_3^-/NO_2^- reduction	HET	$NO_3^- \rightarrow NO_2^- \rightarrow N_2O$	-5 to $0^{b,f,g}$	−39 to −12 ^f
N ₂ O reduction	HET	$N_2O \rightarrow N_2$	-16.4 to -2.9^{i}	−39 to −12 ^f
Abiotic production	-	Various ^{f,h}	29.5 to 35 ^{f,h}	–27 to 1.4 ^h

References:

^a Chandran et al. (2011).

^b Wunderlin et al. (2013a).

^c Sutka et al. (2003).

^d Sutka et al. (2004).

^e Sutka et al. (2006).

f Toyoda et al (2005).

^g Toyoda et al. (2011b).

^h Heil et al. (2014).

ⁱ Reduction favours N₂O with low site preference as the ¹⁴N–O bond is more easily broken than the ¹⁵N–O bond, thus the site preference of the remaining N₂O pool is increased. The values -2.9 to -16.4% refer to ϵ (SP), the site preference fractionation factor for reduction (see Table S2 for references).

controlling the air supply rate to be the rate-limiting factor for AOB activity and therefore for the entire process, thus avoiding nitrite accumulation (Joss et al., 2011). Anammox bacteria are inhibited by dissolved oxygen (DO) concentrations higher than 0.2 mg L⁻ $(6.25 \ \mu\text{M})$ (Joss et al., 2011) and potentially also by high NO₂⁻ concentrations (eg. > 600 mg L^{-1} or 10 mM) (Dapena-Mora et al., 2007). If AOB activity is reduced, DO can increase as less oxygen is consumed in the reactor, inhibiting anammox and interrupting operation. Thus the maximal sustainable treatment rate depends on the sludge activity, which – according to experience from longterm full-scale operations - may not be assumed constant. Online monitoring of NO_2^- has the potential to serve as control parameter to monitor activity. However, as no robust, suitable electrode is available for the continuous, online measurement of NO₂⁻ in pilotor full-scale applications, online measurements of N₂O mixing ratio¹ have been suggested to act as a proxy for NO_2^- , thus presenting an ideal method to monitor and control reactor dynamics (Wunderlin et al., 2013b).

Wastewater treatment is an important, growing source of N₂O, through a number of pathways summarised in Table 1. The wastewater sector currently contributes ~6% of N₂O emissions globally, and best estimates predict that emissions from the sector will increase by >25% between 1990 and 2020 (Bogner et al., 2007). N₂O is a potent greenhouse gas with a global warming potential 298 times higher than CO₂ (100-yr) (Forster et al., 2007) and the most important ozone depleting substance currently released (Crutzen, 1970; Ravishankara et al., 2009). Online N₂O monitoring for process stability results in control and reduction of N₂O emissions, thus providing an additional benefit in terms of greenhouse gas (GHG) release.

 N_2O production by AOBs can be envisaged as a 'leaky pipeline' (Firestone and Davidson, 1989) because N_2O is an unwanted byproduct during the goal reaction, oxidation of NH_4^+ to NO_2^- . Two major pathways are implicated in the emission of N_2O by AOBs: Nitrifier denitrification, and NH₂OH oxidation (see Table 1). When the overall turnover of NH_4^+ by AOBs increases, the 'leaking' of N_2O also increases – thus N_2O emissions can roughly indicate AOB activity. Biotic and abiotic N_2O production by hydroxylamine (NH₂ OH) oxidation can be minimised by keeping the concentration of $\rm NH_4^+$ relatively low (e.g. by intermittent dosing of wastewater); previous studies suggest that even at high $\rm NH_4^+$ concentrations this pathway contributes less than 20–30% of total N₂O emissions in PN-anammox reactors (Ni et al., 2014; Ishii et al., 2014). In contrast to AOBs, it was generally agreed until recently that anammox bacteria do not produce significant amounts of N₂O (Kampschreur et al., 2009; Okabe et al., 2011); results from Lotti et al. (2014) suggest however that up to 0.2% of nitrogen removed by anammox may in fact be released as N₂O. This is much lower than the percent of ammonium released as N₂O by AOBs during imbalances in the reactor, thus in a PN-anammox reactor, nitrifier denitrification is expected to dominate N₂O production. Online N₂O measurements can therefore act as a proxy for NO₂⁻ concentration, which is an indicator for the relative activity of AOBs compared to anammox.

A major challenge for process regulation via N₂O measurements is the activity of NOBs, which reduce N₂O emissions from nitrifier denitrification by consuming NO₂⁻. Monitoring the net NO₃⁻ production to NH₄⁺ consumption ratio (hereafter $r(NO_3^-)/r(NH_4^+)$) – which should be approximately 10–11% due to NO₃⁻ production by anammox when NOBs are not active (Strous et al., 1997; Bürgmann et al., 2011) – to detect NOB activity is therefore important for process control. In addition, NOB activity should be minimised, eg. with regular washout (Joss et al., 2011). Heterotrophic denitrifiers (HET) also release N₂O during the stepwise reduction of NO₃⁻ to N₂, however HET activity is minimal in PN-anammox systems due to low organic carbon concentrations (Joss et al., 2009; Rathnayake et al., 2013).

N₂O can be the most important greenhouse gas released from wastewater treatment and in addition, shows great potential as an online parameter to monitor process conditions in PN-anammox systems. However, a thorough understanding of N₂O production pathways is lacking, which is necessary both to mitigate emissions and to effectively use online N₂O measurements for process control. N₂O isotopic composition is particularly useful to quantify N₂O production via different pathways (Table 1). The most abundant four isotopocules of N₂O are ¹⁴N ¹⁴N ¹⁶O, ¹⁴N ¹⁸O, ¹⁴N ¹⁵N ¹⁶O (α) and ¹⁵N ¹⁴N ¹⁶O (β). The bulk ¹⁵N isotopic composition refers to the average δ^{15} N at both positions:

$$\delta^{15} \mathsf{N}^{\mathsf{bulk}} = \frac{\delta^{15} \mathsf{N}^{\alpha} + \delta^{15} \mathsf{N}^{\beta}}{2} \tag{1}$$

The N₂O 'site preference' (SP) refers to the difference in ¹⁵N isotopic composition of the central (α) position N compared to the terminal (β) position N:

¹ Mixing ratio is the ratio of the component of interest to the total of all other constituents in a mixture. In this paper, mixing ratio always refers to the *molar* mixing ratio, ie. ppm = parts per million = moles of X per million moles of the total mixture.

Download English Version:

https://daneshyari.com/en/article/6365771

Download Persian Version:

https://daneshyari.com/article/6365771

Daneshyari.com