

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater

Benqin Yang a, Lei Zhang b, Yongwoo Lee c, Deokjin Jahng a,*

- ^a Department of Environmental Engineering & Energy, Myongji University, San 38-2, Namdong, Cheoingu, Yonginshi, Gyeonggido 449-728, Republic of Korea
- ^b Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
- ^c Major in Chemistry & Applied Chemistry, College of Science and Technology, Hanyang University, 1271 Sa-3 Dong, Sangnok-Gu, Ansan, Gyeonggi-Do 426-791, Republic of Korea

ARTICLE INFO

Article history:
Received 24 February 2013
Received in revised form
13 June 2013
Accepted 24 June 2013
Available online 3 July 2013

Keywords:
Bioevaperation
Highly concentrated organic wastewater
Metabolic heat
Biodegradable volatile solids

ABSTRACT

A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L $^{-1}$, 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wastewater discharged from food, leather, chemical and paper industries often contain highly concentrated organic matters. Commonly, activated sludge process and anaerobic digestion can be considered for treating this type of wastewater. However, the traditional and modified activated sludge processes are known to treat wastewater containing a relatively low concentration of organic compounds (Lin et al., 1996). On the contrary, anaerobic digestion is widely applied

to treat the highly concentrated organic wastewater. However, anaerobic digestion leaves effluent that needed to be further treated since BOD (biochemical oxygen demand) concentration is usually high in the effluent. It also generates sludge, albeit, less than aerobic processes (Wang et al., 2010).

Instead of biologically removing contaminants dissolved in the wastewater, production of purified water through filtration can be considered. Membrane processes such as micro- and ultra-filtration and reverse osmosis separate contaminants from water based on the pore size of the

^{*} Corresponding author. Tel.: +82 31 330 6690; fax: +82 31 336 6336. E-mail address: djahng@mju.ac.kr (D. Jahng). 0043-1354/\$ — see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.watres.2013.06.044

Nomenclature			Mass of dry solid in sludge bed (kg)
Α	Surface area of reactor wall (m ²)	$m_{ m water}$	Mass of water in sludge bed (kg)
A _{top}	Surface area of radiating body (m²)	n_{BVS}	Molar number of sludge biodegradable volatile solids (mol)
a, b, c	Empirical constants in the Antoine expression,	n_{CO_2}	Molar number of CO ₂ (mol)
	with values of -2,238, 8.896 and 273, respectively (Mason, 2009)	n _{CO2} -BVS	Molar number of CO ₂ from biodegradable volatil
BVS	Biodegradable volatile solids		solids of sludge (mol)
C_{dryair}	Specific heat of dry air (1.004 kJ kg $^{-1}$ °C $^{-1}$) (Haug, 1993)	n _{CO2} -gas	Molar number of CO_2 measured by a gas analyze (mol)
$C_{\rm solid}$	Specific heat of dried sewage sludge	$n_{CO_2\text{-glu}}$	Molar number of CO ₂ produced from glucose degradation (mol)
0	(1.046 kJ kg ⁻¹ °C ⁻¹) (Haug, 1993)	n _{glu}	Molar number of glucose (mol)
C_{water}	Specific heat of water (4.184 kJ kg ⁻¹ °C ⁻¹) (Haug,	P	Atmospheric pressure (mm Hg)
C	1993)	$p_{ m vs}$	Saturated vapor pressure of water (mm Hg)
C_{watvap}	Specific heat of water vapor (1.841 kJ kg $^{-1}$ °C $^{-1}$)	$p_{ m v}$	Vapor pressure of water (mm Hg)
	(Haug, 1993)	$p_{\rm vi}$, $p_{\rm vo}$	Water vapor pressure of inlet and outlet air
conc.	Concentration		(mm Hg)
Fa	A configuration factor to account for the relative	$Q_{ m bio}$	Biologically generated heat (kJ)
	position and geometry of the objects (0.5,	Q_{BVS}	Heat generated from biodegradable volatile solid
г	dimensionless) (Ahn et al., 2007)		of sludge (kJ)
F _e	The emissivity factor to account for non-black	Q_{condu}	Heat loss by conduction (kJ)
	body radiation (0.85, dimensionless) (Ahn et al.,	Q _{dryair}	Consumed sensible heat by inlet dry air (kJ)
	2007)	Q _{evapo}	Consumed latent heat by removed water (kJ)
FW	Food waste	Q _{glu}	Heat generated from glucose (kJ)
H_{BVS}	Heat of combustion of sludge BVS (21.0 MJ kg ⁻¹	Q _{radi}	Heat loss by radiation (kJ)
	BVS) (Zhao et al., 2010)	Q_{solid}	Consumed sensible heat by dry solid (kJ)
H_{glu}	Heat of combustion of glucose (15.644 MJ kg ⁻¹	Q _{water}	Consumed sensible heat by water (kJ)
_	glucose) (Atkinson and Mavituna, 1991)	Qwatvap	Consumed sensible heat by water vapor (kJ)
L _{latwat}	Latent heat of water evaporation (kJ kg ⁻¹)	RH	Relative humidity
Mair	Molar mass of air (g mol ⁻¹)	Ta	Ambient temperature (°C)
M _{glu}	Molar mass of glucose (g mol ⁻¹)	$T_{\rm m}$	Temperature of the sludge bed (°C)
M_{H_2O}	Molar mass of water (g mol ⁻¹)	T _t	Temperature of the top surface of the reactor (°C
MC	Moisture content (wt%)	TS	Total solids
MC_{final}	Moisture content of the sludge bed after	t	Bioevaporation time (min)
	bioevaporation (wt%)	U	The coefficient of heat transmittance
MC _{initial}	Moisture content of the sludge bed before		$(0.5 \times 10^{-4} \text{ kJ d}^{-1} \text{ m}^{-2} {}^{\circ}\text{C}^{-1})$ of the reactor wall
	bioevaporation (wt%)		(Zhao et al., 2010)
$m_{\rm air}$	Mass of dry air (kg)	V_{air}	Volume of air (L)
m_{eva}	Mass of evaporated water (kg)	V_{CO_2}	Volume of CO ₂ (L)
$m_{ m final}$	Mass of sludge bed after bioevaporation (kg)	VS	Volatile solids
$m_{ m glu}$	Mass of glucose (246 g)	ν	Airflow rate (2.04 L min ⁻¹)
$m_{\rm H_2O}$	Mass of actually-measured evaporated water (kg)	ω	The weight of water vapor on a dry air basis (kg
$m_{\rm H_2O\text{-}bio}$	Mass of theoretically-calculated evaporated water	w	H ₂ O kg ⁻¹ dry air)
	(kg)	σ	Stefane Boltzmann constant
	Mass of metabolic water from sludge BVS (kg)	Ü	$(5.67 \times 10^{-11} \text{ kJ s}^{-1}\text{m}^{-2} \text{ K}^{-4})$ (Ahn et al., 2007)
$m_{H_2\text{O-glu}}$	Mass of metabolic water from glucose (kg)		(5.5. 7. 15 h) 5 hi h / (him et al., 2007)
$m_{\rm initial}$	Mass of sludge bed before bioevaporation (kg)		

membrane. In this case, concentrated wastewater is generated as a byproduct. For highly concentrated wastewater, however, it is very difficult, even if it is technically possible, to obtain absolutely clean water because too much energy and materials are needed.

In order to overcome these obstacles, it is possible to consider evaporating wastewater rather than obtaining clean water. For wet waste, the method of thermal drying is frequently used. Heat produced by burning fuel is supplied to the waste to evaporate the liquid water by which wet

waste is dried to the designated moisture content (MC) (Vaxelaire et al., 1999). For wastewater, it is practically impossible to evaporate all the water due to economic infeasibility given by fuel consumption. However, it would be ideal if both water and organic matters can be removed from highly concentrated wastewater with minimal consumption of energy.

It is well known that microbial metabolism leads to the production of metabolic heat (Madigan et al., 2012). As the substrate concentration increases, the amount of heat

Download English Version:

https://daneshyari.com/en/article/6367477

Download Persian Version:

https://daneshyari.com/article/6367477

Daneshyari.com