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a b s t r a c t

The aqueous solubility (log S ) of xenobiotic chemicals has been identified as a key char-

acteristic in determining their bioaccessibility/bioavailability and their fate and transport

in aquatic environments. We here explore and evaluate the use of a state-of-the-art data

analysis technique (Project to Latent Structures, PLS) to estimate log S of environmentally

relevant chemicals. A large number (n ¼ 624) of molecular descriptors was computed for

over 1400 organic chemicals, and then refined by a feature selection technique. Candidate

predictor descriptors were fitted to data by means of PLS, which was optimized by an in-

ternal leave-one-out cross-validation technique and validated by an external data set. The

final (best) PLS model with only four variables (AlogP, X1sol, Mv, and E ) exhibited note-

worthy stability and good predictive power. It was able to explain 91% of the data (n ¼ 1400)

variance with an average absolute error of 0.5 log units through the solubilities span over

12 orders of magnitude. The newly proposed model is transparent, easily portable from one

user to another, and robust enough to accurately estimate log S of a wide range of emerging

contaminants.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The aqueous solubility (log S ) of organic compounds is one of

the key factors to consider when ranking environmentally

significant organic chemicals regarding their mobility in soil

and volatility from water. It is also a particular important

parameter in studies on the xenobiotic absorption, distribu-

tion, metabolisms, and excretion in humans. However, the

experimental measurement of log S can be difficult because it

can either be very time-consuming to reach the solubility

equilibrium in the case of apolar compounds or require a large

amount of chemicals in the case of highly hydrophilic mole-

cules. In addition, log S values of a majority of emerging

organic species and high-production-volume substances

(Muir and Howard, 2006) remain unknown. Therefore, there is

a need for reliable models for estimating log S based on the

analysis of previously tested compounds. Establishing poly-

parameter quantitative structure property relationships (pp-
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QSPRs) would fill this need and also aid in our understanding

of the influence of chemical structure on log S.

Pp-QSPRs have attracted increasing attention among

environmental scientists (Chen et al., 2010; de Ridder et al.,

2010; Delgado et al., 2012; Gramatica et al., 2007; Katritzky

et al., 2010; Lee and von Gunten, 2012; Mauffret et al., 2010;

Nguyen et al., 2005; Redding et al., 2009; Yangali-Quintanilla

et al., 2010). Compared to one-parameter QSPRs, pp-QSPRs

can take into account of various factors potentially affecting

the chemical fate or property of interest. Several studies have

developed pp-QSPRs in order to predict log S of organic

chemicals, especially drugs (see references in Jorgensen and

Duffy, 2002), from physicochemical properties (i.e., melting

points (Jain and Yalkowsky, 2001)) and/or fragments (i.e., the

eCH2e fragment (Klopman and Zhu, 2001)). Most of these

previous regression exercises are based on multiple linear

regression (MLR). However, MLR or ordinary least-squares

regression has a set of assumptions (e.g., homoscedasticity

and linearity) to be imposed before data mining (Mundry and

Nunn, 2009). It is important to examine whether the basic

assumptions of MLR analysis have been violated too greatly

while using MLR (Cronin and Schultz, 2003; Dearden et al.,

2009). In addition, computer-controlled MLR practices can

add predictor variables having no significant correlation with

the response variable (Mundry and Nunn, 2009). There is al-

ways a temptation to add many predictor variables in a pp-

QSPR just to increase R2 by small amounts. An example of

this case is a log S pp-QSPR containing 55 predictor variables

(Eros et al., 2004). In addition to wasting degrees of freedom

and generating a cumbersome model, including many but

insignificant variables into a pp-QSPR may also overfit the

data, leading to unsatisfactory performance of the model on

an external data set.

Artificial neural networks and other machine learning

techniques such as support vector machines have also been

used in QSPR studies (Engkvist and Wrede, 2002; McElroy and

Jurs, 2001; Vapnik, 1995; Wegner and Zell, 2003). They are

highly efficient for data of high-order interactions andmissing

values, and have been successfully applied in environmental

pattern recognition (Ha and Stenstrom, 2003). However, a

major disadvantage of machine learning techniques is that

they cannot generate an exploratory model, and thus the

resulting QSPRs are not easily portable from one user to

another.

Recently, Project to Latent Structures (PLS) (Abdi, 2010;

Eriksson et al., 2003; Wold et al., 2001) has been recognized

as a powerful data analysis technique in various disciplines

including environmental science, computational chemistry,

toxicology, and pharmaceutical science (Carroll et al., 2009;

Morel et al., 2004; Platikanov et al., 2007; Qin et al., 2012;

Reed et al., 2011; Weiss et al., 2009; Wold et al., 2001;

Yangali-Quintanilla et al., 2010). In PLS, predictor variables

are reduced to latent components, followed by a regression

step where the latent components but not all predictor vari-

ables are used to predict the dependent variable. PLS shares

many similarities with the principal component analysis.

However, unlike the principal component analysis decom-

posing X to obtain components which best explain X, PLS

identifies components from X (i.e., molecular descriptors) that

best predict Y (i.e., log S ) (Abdi, 2010). (The reader wishing to

obtain a more detailed description of the PLS multivariate

methodology is referred to the comprehensive reviews and

relevant texts on this subject (Abdi, 2010; Barker, 2010; Barker

and Rayens, 2003; Eriksson et al., 2001; Esposito Vinzi et al.,

2010; Wold et al., 2001)). The purpose of this paper is to

explore and evaluate the use of PLS in building a log S pp-QSPR

that is exploratory and explanatory in the sense of providing

the insights to the structural influence on log S. The new

model derived from a set of 1400 measured solubilities is

generated using PLS against a group of pertinent molecular

descriptors. Molecular descriptors are state-of-the-art math-

ematical expressions of the structured information contained

in amolecule. They are believed to be “the final result of a logic

and mathematical procedure which transforms chemical in-

formation encoded within a symbolic representation of a

molecule into a useful number or the result of some stan-

dardized experiment” (Todeschini and Consonni, 2000).

2. Methods

2.1. Data set

The data set (see Table S1 of the Supplementary data) con-

tains 1400 organic compounds in more than 22 chemical

classes, gleaned from the database of the Syracuse Research

Corporation (http://www.syrres.com). Most of the solubilities

were determined at 20e25 �C under the ambient pressure

Abbreviations and notations

DBPs disinfection byproducts

PAHs polycyclic aromatic hydrocarbons

PBDEs polybrominated diphenyl ethers

PCBs polychlorinated biphenyls

PCDDs polychlorinated dibenzo-p-dioxins

PCDFs polychlorinated dibenzofurans

PCDEs polychlorinated diphenyl ethers

PFASs perfluoroalkyl substances

PHCs petroleum hydrocarbons

PPCPs pharmaceuticals and personal care products

VOCs volatile organic compounds

bCI95% bootstrap 95% confidence intervals

D Cook’s distance

h leverage

PRESSk predictive error sum of squares for kth latent

component

Qcum
2 the fraction of Y variation explained by all latent

components

Qk
2 the fraction of Y variation explained by a latent

component

Radj
2 adjusted coefficient of determination

RSSke1 residual sum of squares for the (k � 1)th latent

component
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