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There are significant challenges in managing the trade-offs between the production of pastures and grazing live-
stock for profit in the short term, and the persistence of the pasture resource in the longer term under stochastic
climatic conditions. The profitability of using technologies such as grazing management, fertiliser inputs and the
renovation of pastures are all influenced by complex inter-temporal relations that need to be considered to pro-
vide suitable information for managers to enhance tactical and strategic decision making.

In this study pasture is viewed as an exploitable renewable resource with its state defined by total pasture quan-
tity and the proportion of desirable species in the sward. The decision problem was formulated as a stochastic
dynamic programming (SDP) model where the decision variables are seasonal stocking rate and pasture re-
sowing and the objective is to maximise the present value of future economic returns. The solution defines the
optimal seasonal decisions for all intervening states of the system as uncertainty unfolds.

The model was applied to a representative farm in the high rainfall temperate pasture zone of Australia and the
pasture states under which tactical grazing rest, low stocking rates and pasture re-sowing are optimal were iden-
tified. Results provide useful general insights as well as specific prescriptions for the case study farm. The frame-
work developed in this paper provides a means of identifying optimal tactical and strategic decisions that achieve
maximum sustainable economic yields from grazing systems.
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1. Introduction

Managing any grazing system effectively requires an understanding
of the complex dynamic interactions between the state of the pasture
resource and the application of different technologies while also consid-
ering the influences of a stochastic climate on decision making. Relevant
technologies include grazing management, fertiliser application and the
renovation of pastures through the introduction of new species. The de-
cision maker needs to account for multiple and conflicting objectives of
pasture resource production, persistence of desirable pasture species,
livestock productivity and profit (Behrendt et al., 2013a).

The decisions for developing and managing a pasture resource occur
at different stages over the planning horizon. For example, in most
grazing enterprises, the renovation of a pasture with sown species is a
long-term strategic decision, whereas the application of fertiliser tends
to operate at a more tactical level within production years. Grazing
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management includes both stocking rate and time livestock spend graz-
ing a paddock (and the corresponding rest periods from grazing) as de-
cision variables. This means that grazing management operates at a
tactical level, over periods ranging from a year in so-called ‘set stocking’
systems to days in intensive rotational grazing systems, but it also
operates at a strategic level in the context of herd management main-
taining a targeted stocking rate.

The benefits of each technology cannot be considered in isolation be-
cause of the presence of interactions between the technologies and
sources of exogenous risk to the grazing system, such as climate and
price variability (Antle, 1983; Hutchinson, 1992). These interactions
occur over the short term through the production of pasture, and over
the longer term through changes in the botanical composition of the
pasture, which include both desirable and undesirable species groups
(Dowling et al., 2005; Hutchinson, 1992). Botanical composition change
has frequently been considered in rangeland studies (Stafford Smith
et al.,, 1995; Torell et al., 1991), but has largely been neglected in tem-
perate grasslands. Solutions to the complex problem of defining inter-
temporal trade-offs between the productivity of a grazing system and


http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2016.03.001&domain=pdf
http://dx.doi.org/10.1016/j.agsy.2016.03.001
mailto:kbehrendt@csu.edu.au
http://dx.doi.org/10.1016/j.agsy.2016.03.001
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/agsy

14 K. Behrendt et al. / Agricultural Systems 145 (2016) 13-23

the persistence of both desirable and undesirable species within pas-
tures, can be obtained by modelling grasslands as exploitable renewable
resources (Clark, 1990) using a bioeconomic approach.

In summary, the farm manager faces a complex, dynamic decision
problem that involves multiple and conflicting objectives of pasture re-
source production and persistence, livestock productivity, and profit.
The decision problem sits within a dynamic and risky environment,
with investments in sowing pastures, building (and depleting) soil fer-
tility and grazing management being made whilst considering the state
of the pasture resource as it responds to uncertain climatic conditions.
In essence, this is a sequential decision problem (Behrendt et al.,
2013a), where producers manage the grazing system by making both
tactical and strategic decisions at intervening states of the system as
uncertainty unfolds (Trebeck and Hardaker, 1972). Climate risk is
embedded within the sequential decision problem (Behrendt et al.,
2013a; Hardaker et al., 1991), influencing the state of the system after
decisions are made and before income is received.

The state of the grassland resource at any time can be represented as
a set of three state variables: herbage mass, botanical composition, and
soil fertility. The pasture state can be influenced by the strategic deci-
sions available to the producer, such as re-sowing of a pasture with
desirable species and choosing the most appropriate stocking rate, as
well as tactical decisions, such as fertiliser application and grazing
management. In a multi-area grazing system, such as a farm with mul-
tiple paddocks, a mosaic of pasture states and soil fertility conditions
exist and the decision problem becomes more complex.

The exclusion of seasonal variability and tactical responses embed-
ded in a sequential decision process has been shown to provide incor-
rect estimates of the economic benefits of a technology involved in
complex biological and dynamic systems (Marshall et al., 1997). Finding
optimal development paths in the pasture resource problem requires
embedded risk to be considered. That is, any development plan needs
to be adjusted over time depending on uncertain events and states
that influence economic returns and occur as the farm plan evolves.
This situation defines conditions whereby the pasture resource problem
may be formulated as a stochastic dynamic programming problem
(Kennedy, 1986).

In this paper, we develop a bioeconomic framework to optimise
pasture development and management where both pasture quantity
and quality are considered within a stochastic environment. The
model is used to derive optimal tactical and strategic decision rules
that will result in maximum economic sustainable yields from the pas-
ture resource.

2. Methods

The framework developed takes into account the impact of embed-
ded climate risk, technology application and management on the
botanical composition of the pasture resource over time which, in
turn, impacts on optimal management strategies. This is achieved
through the use of two simulation models, AusFarm (CSIRO, 2007) and
the dynamic pasture resource development (DPRD) simulation model,
described in Behrendt (2008); Behrendt et al. (2013a) and Behrendt
et al. (2013b). The AusFarm model, a complex biophysical simulation
model, was calibrated to data from the Cicerone Project farmlet experi-
ment (Scott et al., 2013), and it was used to derive pasture production
parameters for the DPRD model. The DPRD model was then used to
solve the decision problem using a seasonal stochastic dynamic pro-
gramming (SDP) framework.

2.1. Seasonal stochastic dynamic programming model

The SDP solution process uses four seasonal transition probability
matrices that are applied sequentially to solve a recursive equation
with the objective of maximising the expected net present value of
returns from sheep production systems over the long run. The SDP

model finds seasonally optimal tactical and strategic decision rules in
terms of stocking rates and pasture sowing, as functions of pasture
mass and composition (proportion of desirables).

Two SDP recursive equations represent the four seasons. The SDP re-
cursive equation for the first three seasons starting with autumn is as
follows:

Vi(z}) = max {E[Tt(zf,uf)} +6SE{V§“ (@(z@uﬁ))”;fors =1,2,3. (1)

The SDP recursive equation for the final season, summer, in a year is
as follows:

Vi(z) = max {E[Tt(zﬁ,uﬁ)} +&E {V}H (Gs(zf,uf))ﬂ ;fors =4 2)

where s denotes the season (s = 1,...,4); t denotes the year; V7 is the op-
timal value function for the given season and year; E is the expectation
operator; 1 is the stage return function for a given season; z¢ is a state
vector consisting of three state variables (defined below) for the given
season and year; u; is a decision vector consisting of two decision vari-
ables (defined below) for the given season and year; 6° is the transfor-
mation function for the given season; and &s is the discount factor
(6s =1/ (1 + ps)).The seasonal discount rate, ps, is pro-rated from
the annual discount rate, p, based on the length of the season in days
(ps = p - Ds/365). The difference between Eqgs. (1) and (2) is in the sea-
son and year indexes of the future value of the system, Vi *, which re-
fers to the next season in the current year, and V} ; refers to the first
season in the next year.
The state vector z; contains three state variables:

z; = (x,yd;. yudy) 3)

where x is the proportion of desirable species in the sward and repre-
sents their basal area within the paddock; yd is the herbage mass of de-
sirable species in the sward (kg Dry Matter/ha) and yud is the herbage
mass of undesirable species (kg DM/ha). All state variables are mea-
sured at the start of season s in year t.

The decision vector uicontains two decision variables:

u; = (sr¢,7s7) (4)

where sr is the stocking rate (hd/ha) and rs is the decision to re-sow the
pasture, with both decisions taken at the start of season s in year t.

The transformation functions, 0°, are represented by transition prob-
ability matrices derived through Monte Carlo simulation with the bio-
logical model described in Behrendt et al. (2013a) and Behrendt et al.
(2013b) as described below, and using stochastic multipliers derived
from climatic data as explained in Behrendt (2008). The biological
model defines the expected levels of production and the impact of dis-
turbance as determined by stocking rate and re-sowing decisions.

To solve the problem we define the Markovian transition probability
matrices P° and rewrite the expectation operators in discrete terms. The
elements Pjj of matrix P° represent the probability of moving from state i
in season s to state j in season s + 1. The elements of the transition ma-
trices given the decision u® are as follows:

Pj(u’) = P(2; [z}, u", 1) (5)
where r° is an index of rainfall and other climatic variables that affect

pasture growth. We can now write the expectations for the recursive
equations as follows:

En(z,u) = ZP(rj)rt(zf,us,rj) (6)
j

EV(BS(zf,uS)) = Zpl?j(us)‘/(Z;H) )
J
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