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A B S T R A C T

The generic and simple version of SALUS (System Approach to Land Use Sustainability) crop model was
recently integrated in the DSSAT (Decision Support System for Agrotechnology Transfer) cropping system
model to provide an alternative approach to more complex crop models without the need for a detailed
parameterization.

A previous uncertainty and sensitivity analysis of the model (SALUS-Simple) established that accu-
rate estimation of 15 of the 20 crop parameters required for predicting crop performance under water
limitation was necessary to achieve reliable simulations. The present study used a Markov Chain Monte
Carlo-based Bayesian stepwise approach for estimating crop parameters in SALUS-Simple using limited,
end-of-season data (limited data case) and detailed in-season data (detailed data case). Independent testing
were performed using data distributed with DSSAT version 4.5.

Results of the detailed data case indicated that the estimated parameters resulted in smaller devia-
tions between simulated and measured variables and in posterior parameter distributions with smaller
variances. Independent testing showed that maize growth simulations (based on both data cases) were
in good agreement with observations while peanut and cotton growth was simulated with mixed success.
SALUS-Simple predictions using parameters estimated in the limited data case were concordant with
observations for end-of-season biomass and yield, but simulations of in-season growth were degraded
relative to the use of parameters estimated in the detailed data case.

We conclude that the use of a sequential approach reduced compensation errors and, the use of a
range of data types combined with a higher ratio between the number of data points and the number
of estimated parameters significantly reduced uncertainties associated with the estimated parameters.
Furthermore, model predictions based on mean parameter values can be regarded as reliable estima-
tors of the expected values of the distributions of model predictions when an average prediction rather
than a distribution is needed. Results from this study highlighted the principle that parameters esti-
mated based on end-of-season data do not guarantee accurate prediction of in-season growth even if a
Bayesian approach is used. The ability of the SALUS-Simple model to be parameterized or adapted for
simulating canopy-level potential production of annual plants based on limited data is promising. Further
testing of the model will help establish its response to different soils, climates and crops.

Published by Elsevier Ltd.

1. Introduction

Scientific interest in using crop models at regional and global
scales for large-scale assessment of agricultural systems has drawn
attention to generic, simplified crop models. A number of large-
scale crop modeling studies have raised concerns about knowledge
gaps in calibrating crop models at regional scales and accurately
modeling multi-crop coverage for adequate comparison with na-
tional agricultural statistics (Adam et al., 2011; Faivre et al., 2004;

Rosenzweig et al., 2013). The major benefit of a generic model for
annual crops and grasses at this scale is to provide a consistent
framework for representing cropping system components present
in a spatial grid cell with the same model and set of parameters. A
primary advantage associated with a simple model is the relative-
ly small number of parameters required to characterize a crop and
the ability to use literature or limited crop data to provide reason-
able estimates of the parameters. In addition, recent model inter-
comparison studies (Asseng et al., 2013) have shown that alternative
approaches can assist with identifying strengths and weaknesses
in different models, provide a more realistic explanation of causes
of simulation errors, promote model improvement, and contrib-
ute to improved model-based recommendations.
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The generic and simple version of the SALUS (System Ap-
proach to Land Use Sustainability) crop model was recently
integrated in the DSSAT (Decision Support System for Agrotechnology
Transfer) cropping system model to provide an alternative ap-
proach to more complex crop models in DSSAT without the need
for estimation of detailed crop parameters (Dzotsi et al., 2013). The
typical crop described in the model (SALUS-Simple) has an annual
cycle with its leaf area index (LAI) curve described by an increase
and a decline with thermal time during the season, and its total dry
matter estimated using the radiation use efficiency (RUE) ap-
proach (Monteith, 1977). The ability of a model to simulate crops
and grasses with a relatively small number of parameters makes
it a good candidate for large-scale modeling studies in which within-
field variations are not critical due to aggregation of model outputs
(Bondeau et al., 2007; Challinor et al., 2004; Lobell and Burke, 2010;
Stehfest et al., 2007). Parameterization of crops in SALUS-Simple is
a major component of the model development and provides the op-
portunity of assessing the ability of the model to correctly represent
within- and between-species variations as well as interactions oc-
curring in the soil-plant-atmosphere continuum. The model
potentially can be parameterized for simulating the characteris-
tics of crop maturity groups based on literature and limited data,
and therefore can contribute to reducing uncertainties in estimat-
ing detailed parameters for specific cultivars using aggregated crop
data.

An uncertainty and sensitivity analysis demonstrated that the
SALUS model is sensitive to crop parameters involved in the accu-
mulation of thermal time, the representation of leaf area index (LAI),
and the calculation of plant dry matter (Dzotsi et al., 2013). That
initial study demonstrated strong relationships between some pa-
rameters and specific model outputs, which suggested that an
adaptive approach could be used to estimate crop parameters with
the goal of reducing compensation errors that tend to occur during
model calibration (Wallach, 2011). This paper demonstrates such
a stepwise approach for maize, peanut and cotton while account-
ing for the limited availability of data that affect most large-scale
crop modeling studies and the existence of uncertain prior infor-
mation about the parameters. Our stepwise procedure emphasizes
a Bayesian parameter estimation approach but integrates a
frequentist approach to reduce compensation errors. A frequentist
approach considers a parameter to have a true, fixed value that can
be estimated by obtaining a random sample of data from an ex-
periment (Ellison, 1996). This approach is solely based on available
data and may lead to over-fitting of crop parameters to data without
accounting for other sources of uncertainty affecting the param-
eters. Frequentist approaches also exhibit a greater risk of producing
data-, site-specific parameter estimates because they do not provide
a mean of incorporating existing knowledge that may have been
accumulated about the parameter from other sources into the pa-
rameter estimation procedure. Since the true value of the parameter
is unknown, a confidence interval constructed about the esti-
mated parameter value in a frequentist approach captures the true
value in k% of all possible samples. A more transferrable result would
be an interval that contains k% of all possible parameter values
(Ellison, 1996), or even better a probability distribution that quan-
tifies the uncertainty about the parameter given the data: this is
the typical methodology of a Bayesian approach (Makowski et al.,
2002).

A Bayesian approach integrates several sources of information
about the parameters treated as random variables for which pos-
terior distributions can be derived by combining prior knowledge
with observed data. Before using data to estimate parameters, un-
certainty ranges of parameters can be defined, for example based
on values found in the literature or expert knowledge. A Bayesian
approach further associates a likelihood function to the data, which
is the probability of observing the data conditional upon the

parameter set. In theory, the posterior parameter distribution can
be calculated using Bayes theorem. However, in practice, this is gen-
erally complicated by high numbers of model parameters and crop
model non-linearities. One of the most recognized numerical
methods originally used by physicists is the Metropolis algorithm
(Metropolis et al., 1953), later generalized as the Metropolis–
Hastings (MH) algorithm (Hastings, 1970) which is a Markov Chain
Monte Carlo (MCMC) approach because it relies on the current value
of the parameter to determine the next sample in the sequence. The
Bayesian approach based on the MCMC-MH algorithm has been in-
creasingly popular in the literature and applications in various fields
including hydrology (Bates and Campbell, 2001), forestry (Ceglar
et al., 2011), large-scale crop modeling (Iizumi et al., 2009), astro-
physics (Putze et al., 2010), and field scale crop modeling (Makowski
et al., 2002) have been reported. A comprehensive description and
analysis of the MH algorithm can be found in Chib and Greenberg
(1995).

This paper pursues the following objectives related to the SALUS-
Simple model development and testing: i) develop and test
parameter sets for maize, peanut and cotton, and estimate associ-
ated uncertainties using available data in DSSAT version 4.5; ii)
investigate the effect of data detail on the accuracy of estimated
parameters.

2. Materials and methods

2.1. The SALUS-Simple crop model

Parameters were estimated for maize (Zea mays L.), peanut
(Arachis hypogaea L.) and cotton (Gossypium hirsutum L.) using the
SALUS-Simple crop model (Basso et al., 2006; Dzotsi et al., 2013)
integrated in the Decision Support System for Agrotechnology Trans-
fer (DSSAT, Jones et al., 2003). SALUS-Simple is a generic crop model
that derives from ALMANAC (Agricultural Land Management Al-
ternatives with Numerical Assessment Criteria; Kiniry et al., 1992)
and was designed to simulate a wide range of annual plant species
and the impact of different environments. Within-species varia-
tions may be confined to maturity groups. A detailed description
of the SALUS-Simple model for maize, peanut and cotton can be
found in Dzotsi et al. (2013). While the model can be parameter-
ized for specific cultivars, it was not designed to capture detailed
differences among plant cultivars. Total crop growth duration is ex-
pressed as cumulative degree-days from planting to maturity
(TTMature, Table 1) and the relative thermal time is the fraction of
TTMature such that 0 represent planting and 1 corresponds to ma-
turity. Timing of germination and emergence are predicted using
crop parameters that describe the cumulative degree-days re-
quired for the occurrence of these events. The beginning of leaf
senescence, which marks the end of vegetative growth, is a crop
parameter expressed in terms of relative thermal time. Leaf area
index is simulated directly using a sigmoid function whose shape
is controlled by three crop parameters (Table 1). Total dry matter
is calculated using the RUE approach (Monsi and Saeki, 1953;
Monteith, 1977). A relative thermal time-dependent function is used
to dynamically partition total dry matter between roots and
aboveground plant parts while yield is considered to be a fixed frac-
tion of aboveground dry matter. The current version of SALUS-
Simple uses 20 parameters to model a crop in water-limited
conditions (Table 1).

2.2. Parameter and uncertainty estimation cases

A total of 13 crop parameters were estimated (Table 1 and Fig. 1)
following two distinct procedures to study the effect of limited avail-
ability of data on the parameters and uncertainty estimates. The case
of availability of a detailed dataset (hereafter denoted by detailed
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