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H I G H L I G H T S

� We derive a combinatorial stochastic process for the evolution of the transmission tree over the host contact network in a susceptible–infected (SI)
epidemic model.

� We develop a biparametric Beta-splitting model that generates transmission trees without explicitly modelling the underlying contact network.
� We show that for specific values of the parameters we can get the exact probabilities for a complete, star or path network.
� We use the maximum likelihood estimator to consistently infer the two parameters driving the transmission process based on observations of the
transmission trees.

a r t i c l e i n f o

Article history:
Received 19 January 2016
Received in revised form
22 July 2016
Accepted 22 July 2016
Available online 9 August 2016

MSC Classification:
92D30
05C05
05C20
60J10
60J27
05C85

Keywords:
Rooted ranked planar binary tree
Contact network
Susceptible–infected epidemic model
Non-parametric combinatorial stochastic
process
Parametric Beta-splitting model
Random graph models
Meme evolution

a b s t r a c t

We derive a combinatorial stochastic process for the evolution of the transmission tree over the infected
vertices of a host contact network in a susceptible-infected (SI) model of an epidemic. Models of
transmission trees are crucial to understanding the evolution of pathogen populations. We provide an
explicit description of the transmission process on the product state space of (rooted planar ranked
labelled) binary transmission trees and labelled host contact networks with SI-tags as a discrete-state
continuous-time Markov chain. We give the exact probability of any transmission tree when the host
contact network is a complete, star or path network – three illustrative examples. We then develop a
biparametric Beta-splitting model that directly generates transmission trees with exact probabilities as a
function of the model parameters, but without explicitly modelling the underlying contact network, and
show that for specific values of the parameters we can recover the exact probabilities for our three
example networks through the Markov chain construction that explicitly models the underlying contact
network. We use the maximum likelihood estimator (MLE) to consistently infer the two parameters
driving the transmission process based on observations of the transmission trees and use the exact MLE
to characterize equivalence classes over the space of contact networks with a single initial infection. An
exploratory simulation study of the MLEs from transmission trees sampled from three other determi-
nistic and four random families of classical contact networks is conducted to shed light on the relation
between the MLEs of these families with some implications for statistical inference along with pointers
to further extensions of our models. The insights developed here are also applicable to the simplest
models of “meme” evolution in online social media networks through transmission events that can be
distilled from observable actions such as “likes”, “mentions”, “retweets” and “þ1s” along with any con-
comitant comments.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The detailed picture of the path an epidemic takes through a
population over its course is encapsulated in the transmission tree.
The transmission tree represents the physical continuum of con-
tacting hosts and thus frames the host-level structure within
which pathogens are transmitted in a communicable disease.
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Therefore, models of transmission trees are crucial to under-
standing the evolution of pathogen populations. Constructing
models of transmission trees is the main focus of this paper. Al-
though we limit ourselves here to the epidemiological context of
transmissions of a communicable disease over a contact network
of hosts for concreteness of language and notions from a field with
a longer research history, most of our basic results and insights are
naturally applicable, as briefly discussed in Section 5.2, to the
cultural context of transmissions of “memes” (Dawkins, 1976 p.
192) over a social network of individuals, such as Twitter (Solon,
2013). More generally, they can be used to model transmission
events in Finite Markov Information Exchange processes (Aldous,
2013, Section 2.2) as described below.

To understand the process by which a transmission tree grows, we
need to consider (i) the structure of the population in which the epi-
demic spreads and (ii) the state of the individuals in the population as
the epidemic spreads. Network models are a natural candidate for de-
scribing population structure where the population is identified with a
network in which each vertex represents an individual and an arc (a
directed weighted edge) from vertex ıi to ıj, given by a non-negative

∈ [ ∞)w 0,i j, , represents the propensity with which the infection can be
transmitted from ıi to ıj. This propensity can be given meaning in terms
of frequency of contacts by taking each >w 0i j, to specify independent
rate- wi j, Poisson process for the contact times between ıi and ıj, for
instance (this is the “meeting process” of Aldous, 2013). We call these
networks contact networks and assume that they are fixed or static
through time. Thus, the contact network of a population summarizes
“who can contact whom and how frequently” and is depicted in Fig. 1
(a) for a small population with vertices labelled by individuals
ı ı ı…, , ,1 2 9 (the edges are undirected). Note that we sometimes label
the vertices starting from ı0 to stay true to the indexing convention in
sageMath/python (but this should be clear from the context).

The epidemic state of each individual at a given time can be in one
of the several possible states, depending on the particularities of the
epidemic model. The simplest case, known as the SI model, involves
only two states that indicate whether an individual at a given time is
susceptible (S) to or infected (I) by a pathogen. Under this model, the
only possible state transition is from S to I as specified by the contact
network. In other words, a susceptible individual can be infected by
any individual in its in-neighborhood who is already infected. The
contact network with its individual vertices further “tagged” by their
epidemic states (S or I) is called the tagged contact network. The epi-
demic states of the individuals in the population after some time are
shown by tagging (coloring) the infected or susceptible individuals
with I or S tags (red or white colors) in Fig. 1(b).

The transmission digraph is a directed edge-labelled subgraph of
the contact network containing all infected vertices and directed
edges labelled by the time of transmission. It is a basic object of
interest and is depicted in Fig. 1(b). The transmission digraph can
also be represented by the more convenient transmission tree
shown in Fig. 1(c). The internal vertices of the transmission tree
correspond to times of transmission events, the below (or left) and
above (or right) planar sub-trees encode who infected whom, and

the leaf vertices correspond to the set of infected individuals. Since
the tagged contact network co-evolves with the transmission tree,
the transmission process is naturally seen as a Markov chain on
the product space of tagged contact networks and transmission
trees. We consider a stochastic model, as opposed to a determi-
nistic one, to be natural because the spread of an epidemic is in-
herently probabilistic (Andersson and Britton, 2000).

The transmission tree captures several details about how an infec-
tion spreads through the population, including combinatorial structural
information such as who infected whom, order and timing of infection
events, the time it takes for a specified set of individuals to be infected,
tree shape statistics such as indices of Sackin (1975) and Colless (1982),
number of cherries or sub-terminal vertices (McKenzie and Steel, 2000),
etc., various isomorphism classes, such as (un)ranked/(non)planar un-
labelled trees and so on, but also classical epidemiological univariate
statistics, such as prevalence and incidence through time, reproduction
numbers and total time of epidemic.

Furthermore, by a natural extension of the pure-birth process
underpinning the SI model to a birth-and-death process that is
combinatorially more involved with an additional epidemic state
indicating whether the individual is “removed” (R) from the po-
pulation, one can extend the transmission process developed here
for the SI epidemic model to the more realistic susceptible–in-
fected–recovered (SIR) epidemic model. With such an extension,
which we will not pursue in this elementary study of the simplest
SI epidemic model (for reasons explained below), the leaves of the
SIR transmission trees will not only be tagged by I but also by R
and they will naturally capture various univariate statistics of in-
terest to applied epidemiologists including the final-size or total
number of infections (Ludwig, 1975; Pellis et al., 2008; House et al.,
2012). We outline a set of combinatorial steps needed towards
such a future direction of work in Section 5.1.

While various analytical results (e.g. Andersson and Britton, 2000)
and computationally intensive methods (e.g. House et al., 2012) are
available for various univariate epidemiological statistics and can often
be obtained without explicitly modelling the tree, most insights about
the structural information in the tree (even for the simplest SI epidemic
model) are difficult to derive analytically and so are based on simulation
studies over parametric families of specific models.

Empirical efforts to understand the transmission process have
historically focused on time series and individual event times
(such as infection or recovery times) as the main data source.
These relatively sparse forms of data have been difficult to collect
and not particularly informative, providing limited information
about the transmission tree (but see Haydon et al., 2003; Wallinga
and Teunis, 2004) or the underlying contact network.

Recently, there has been an increasing attention paid to using the
large amounts of viral and bacterial genomic data now available to
study outbreaks. The key observation suggesting this data will be in-
formative about the transmission tree is that, if there is little within-
host viral genetic diversity, the phylogenetic tree of pathogenic gen-
omes will match the transmission tree (though, in many cases, this
assumption does not hold, Romero-Severson et al., 2014; Ypma et al.,

Fig. 1. Spread of an epidemic over (a) the contact network of a population as shown by (b) a sub-network where edges representing transmission events are labelled by the
time of event and the infected vertices are colored red and (c) the corresponding transmission tree. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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