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H I G H L I G H T S

� Flux-concentration duality implies an equivalence between descriptions in terms of concentrations or unidirectional fluxes.
� A novel stoichiometric condition for duality between unidirectional fluxes and concentrations is proposed.
� Flux-concentration duality is a pervasive property of biochemical networks.
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a b s t r a c t

Mathematical and computational modelling of biochemical networks is often done in terms of either the
concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical
modelling from either perspective equivalent to the other? Mathematical duality translates concepts,
theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one
manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between
unidirectional fluxes and concentrations. Our numerical experiments, with computational models de-
rived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is
a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is
sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of
molecular species, there is at least one reaction complex that involves species from only one of the two
sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that
the behaviour of the corresponding biochemical network can be described entirely in terms of either
concentrations or unidirectional fluxes.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Systems biochemistry seeks to understand biological function
in terms of a network of chemical reactions. Systems biology is a
broader field, encompassing systems biochemistry, where under-
standing is in terms of a network of interactions, some of which
may not be immediately identifiable with a particular chemical or
biochemical reaction. Mathematical and computational modelling
of biochemical reaction network dynamics is a fundamental
component of systems biochemistry. Any genome-scale model of a
biochemical reaction network will give rise to a system of equa-
tions with a high-dimensional state variable, e.g., there are at least

1000 genes in Pelagibacter ubique (Giovannoni et al., 2005), the
smallest free-living microorganism currently known. In order to
ensure that mathematical and computational modelling remains
tractable at genome-scale, it is important to focus research effort
on the development of robust algorithms with time complexity
that scales well with the dimension of the state variable.

Given some assumptions as to the dynamics of a biochemical
network, a mathematical model is defined in terms of a system of
equations. Characterising the mathematical properties of such a
system of equations can lead directly or indirectly to insightful
biochemical conclusions. Directly, in the sense that the recognition
of the mathematical property has direct biochemical implications,
e.g., the correspondence between an extreme ray of the steady
state (irreversible) flux cone and the minimal set of reactions that
could operate at steady state (Schuster et al., 2000). Or indirectly,
in the sense of an algorithm tailored to exploit a recognised
property, which is subsequently implemented to derive

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

http://dx.doi.org/10.1016/j.jtbi.2016.06.033
0022-5193/& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

n Corresponding author.
E-mail addresses: ronan.m.t.fleming@gmail.com (R.M.T. Fleming),

nikos.vlassis@gmail.com (N. Vlassis), ines.thiele@gmail.com (I. Thiele),
saunders@stanford.edu (M.A. Saunders).

Journal of Theoretical Biology 409 (2016) 1–10

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2016.06.033
http://dx.doi.org/10.1016/j.jtbi.2016.06.033
http://dx.doi.org/10.1016/j.jtbi.2016.06.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.06.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.06.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2016.06.033&domain=pdf
mailto:ronan.m.t.fleming@gmail.com
mailto:nikos.vlassis@gmail.com
mailto:ines.thiele@gmail.com
mailto:saunders@stanford.edu
http://dx.doi.org/10.1016/j.jtbi.2016.06.033


biochemical conclusions from a computational model, e.g., robust
flux balance analysis algorithms (Sun et al., 2013) applied to in-
vestigate codon usage in an integrated model of metabolism and
macromolecular synthesis in Escherichia coli (Thiele et al., 2012).

Mathematical duality translates concepts, theorems or mathe-
matical structures into other concepts, theorems or structures in a
one-to-one manner. Sometimes, recognition of mathematical
duality underlying a biochemical network modelling problem
enables the dual problem to be more efficiently solved. An ex-
ample of this is the problem of computing minimal cut sets, i.e.,
minimal sets of reactions whose deletion will block the operation
of a specified objective in a steady state model of a biochemical
network (Klamt and Gilles, 2004). Previously, computation of
minimal cut sets required enumeration of the extreme rays of part
of the steady state (irreversible) flux cone, which is computa-
tionally complex in memory and processing time (Haus et al.,
2008). By recognising that minimal cut sets in a primal network
are dual to extreme rays in a dual network (Ballerstein et al., 2012),
one can compute select subsets of extreme rays for the dual net-
work that correspond to minimal cut sets with the certain desired
properties in the primal (i.e., original) biochemical network in
question (von Kamp and Klamt, 2014). This fundamental work has
many experimental biological applications, including metabolic
engineering (Mahadevan et al., 2015).

Recognition of mathematical duality in a biochemical network
modelling problem can have many theoretical biological applica-
tions, in advance of experimental biological applications. For ex-
ample, in mathematical modelling of biochemical reaction net-
works, there has long been an interest in the relationship between
models expressed in terms of molecular species concentrations
and models expressed in terms of reaction fluxes. When con-
centrations or net fluxes are considered as independent variables,
a duality between the corresponding Jacobian matrices has been
demonstrated (Jamshidi and Palsson, 2009). In this case, the con-
centration and net flux Jacobian matrices can be used to estimate
the dynamics of the same system, with respect to perturbations to
concentrations or net fluxes about a given steady state. The primal
(concentration) Jacobian and dual (net flux) Jacobian matrices are
identical, except that one is the transpose of the other. Matrix
transposition is a one-to-one mapping and the aforementioned
duality is between the pair of Jacobians. This does not mean that
the net flux and concentration vectors are dual variables in the
same mathematical sense, and neither are the perturbations to
concentrations or net fluxes. This is because the Jacobian duality
(Jamshidi and Palsson, 2009), which exists for any stoichiometric
matrix, does not enforce a one-to-one mapping between con-
centrations and net fluxes unless the stoichiometric matrix is in-
vertible, which is never the case for a biochemical network
(Heinrich et al., 1978).

Herein we ask and answer the question: what conditions are
necessary and sufficient for duality between unidirectional fluxes
and molecular species concentrations? We establish a necessary
linear algebraic condition on reaction stoichiometry in order for
duality to hold. We also combinatorially characterise this stoi-
chiometric condition in a manner amenable to interpretation for
biochemical networks in general. In manually curated metabolic
network reconstructions, across a wide range of species and bio-
logical processes, we confirm satisfaction of this stoichiometric
condition for the major subset of molecular species within each
reconstruction of a biochemical network. Furthermore, we de-
monstrate how linear algebra can be applied to test for satisfaction
of this stoichiometric condition or to identify the molecular spe-
cies involved in violation of this condition. We also demonstrate
that violation of flux-concentration duality points to discrepancies
between a reconstruction and the underlying biochemistry,
thereby establishing a new stoichiometric quality control

procedure to select a subset of a biochemical network re-
construction for use in computational modelling of steady states.

First, we establish a linear algebraic condition and a combina-
torial condition for duality between unidirectional fluxes and
concentrations. Subsequently, we introduce a procedure to convert
a reconstruction into a computational model in a quality-con-
trolled manner. We then apply this procedure to a range of gen-
ome-scale metabolic network reconstructions and test for the
linear algebraic condition for flux-concentration duality before
and after conversion into a model. We conclude with a broad
discussion, with examples illustrating how a recognition of flux-
concentration duality could help address questions of biological
relevance and improve our understanding of biological
phenomena.

2. Theoretical results

2.1. Stoichiometry and reaction kinetics

We consider a biochemical network with m molecular species
and n (net) reactions. Without loss of generality with respect to
genome-scale biochemical networks, we assume ≤m n. We as-
sume that each reaction is reversible (Lewis, 1925) and can be re-
presented by a unidirectional reaction pair. With respect to the
forward direction, in a forward stoichiometric matrix ∈ ×F m n, let
Fij be the stoichiometry of molecule i participating as a substrate or
catalyst in forward unidirectional reaction j. Likewise, with respect
to the reverse direction, in a reverse stoichiometric matrix ∈ ×R m n,
let Rij be the stoichiometryof molecule i participating as a substrate
or catalyst in reverse unidirectional reaction j. The set of molecular
species that jointly participate as either substrates or products in a
single unidirectional reaction is referred to as a reaction complex.

One may define the topology of a hypergraph of reactions with
a net stoichiometric matrix = −S R F: . However, a catalyst, by defi-
nition, participates in a reaction with the same stoichiometry as a
substrate or product ( = )F Rij ij , so the corresponding row of S is all
zeros unless that catalyst is synthesised or consumed elsewhere in
the same biochemical network, as is the case for many biochem-
ical catalysts (Thiele et al., 2009). For example, consider the ith
molecular species acting as a catalyst in some reactions. If it is
synthesised in the jth reaction of a biochemical network, the
stoichiometric coefficient in the forward stoichiometric matrix will
be less than that of the reverse stoichiometric matrix ( <F Rij ij), so

= − >S R F: 0ij ij ij . This also encompasses the case of an auto-cata-
lytic reaction.

Before proceeding, some comments on our assumptions are in
order. One may derive S from F and R, but the latter pair of ma-
trices cannot, in general, be derived from S because S omits the
stoichiometry of catalysis. The orientation of the hypergraph, i.e.,
the assignment of one direction to be forward (substrates ⇀
products), with the other reverse, is typically made so that net flux
is forward (with positive sign) when a reaction is active in its
biologically typical direction in a biochemical network. This is an
arbitrary convention rather than a constraint, and reversing the
orientation of one reaction only exchanges one column of F for the
corresponding one in R. Although every chemical reaction is in
principle reversible, in a biochemical setting, due to physiological
limits on the relative concentrations of reactants and substrates,
some reactions are practically irreversible (Noor et al., 2013). Our
conclusions also extend to systems of irreversible reactions be-
cause the reaction complexes for an irreversible reaction are the
same as those for a reversible reaction.

In the following, the exponential or natural logarithm of a
vector is meant component-wise, with ( ( )) =exp log 0 : 0. Let ∈ >vf

n
0

and ∈ >vr
n

0 denote forward and reverse unidirectional reaction
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