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H I G H L I G H T S

� We propose an effective approach of attractor calculation for Boolean networks.
� The approach calculates attractors by using constant nodes and simplified networks.
� Algorithm is effective to calculate all attractors for small average degree networks.
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a b s t r a c t

Boolean network models provide an efficient way for studying gene regulatory networks. The main
dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for
analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this
study, which improved the predecessor-based approach. Furthermore, the proposed approach combined
with the identification of constant nodes and simplified Boolean networks to accelerate attractor cal-
culation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene
regulatory networks. If the average degree of the network is not too large, the algorithm can get all
attractors of a Boolean network with dozens or even hundreds of nodes.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean network models provide an efficient way for studying
gene regulatory networks, which were first introduced by Kauff-
man (1969, 1993). Boolean network models can be particularly
suited to large-scale gene regulatory networks (Albert and Oth-
mer, 2003; Hu et al., 2015; Bérenguier et al., 2013; Rodríguez et al.,
2012; Singh et al., 2012). In a Boolean network, the state of node
mainly presents as ON (active, 1 value) and OFF (inactive, 0 value).
The main dynamics of a Boolean network is determined by its
attractors (steady states or limit cycles). Attractor computing plays
a key role for analyzing Boolean gene regulatory networks. The
update schemes of Boolean networks mainly are synchronous,
asynchronous and stochastic. An n-node Boolean network, there
are 2n possible network states. To calculate all attractors, the full
enumeration of the state space is extremely time-consuming for
all 2n possible network states need to be updated or evaluated,
especially in large-scale networks. For example, for a 64-node

network, with total 264 states and with processing 100,000 states
per second, it needs 600,000 years. However, networks based on
real life systems can consist of dozens or even hundreds of nodes.
Although the full enumeration of the state space is able to calcu-
late all attractors, it is not suitable for computing attractors of
large-scale networks. Many approaches have been proposed to
calculate attractors in the past years, such as binary decision dia-
grams (Zheng et al., 2013; Garg et al., 2008), algebraic approach
(Veliz-Cuba et al., 2015; Alan Veliz-Cuba et al., 2014; Hinkelmann
et al., 2011), sampling approach (Oosawa and Savageau, 2002;
Raeymaekers, 2002), reduction approach (Zańudo and Albert,
2013; Alan, 2011; Assieh Saadatpour et al., 2013), integer pro-
gramming-based method (Qiu et al., 2014; Akutsu et al., 2012),
SAT-based algorithm (Dubrova and Teslenko, 2011), sub-network
method (Filippone et al., 2008; Leicht and Newman, 2008; Zhao
et al., 2003), and predecessor-based approach (Wuensche, 1999;
David, 2006). Until now, there is no generic method that can ef-
ficiently find every attractor for large-scale networks. The papers
of Zheng et al. (2013) and Garg et al. (2008) used binary decision
diagrams to calculate attractors for both synchronous and asyn-
chronous networks. The papers of Veliz-Cuba et al. (2015), Alan
Veliz-Cuba et al. (2014), and Hinkelmann et al. (2011) calculated all
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steady states of sparse Boolean networks with up to 1000 nodes.
The approach based on sampling cannot guarantee finding all at-
tractors. Reduction approach and sub-network method require
specific networks and there is a risk of errors to get attractors.
Integer programming-based method and SAT-based algorithm
cannot effectively deal with large-scale Boolean networks with
average in-degree greater than 2. The paper of David (2006) pro-
posed an approach of finding every attractor in a Boolean network.
The method analyzes certain partial states to see whether or not
they are capable of occurring in an attractor state. Based on the
paper of David (2006), this study improved related algorithm and
proposed the algorithm considering constant nodes and simpli-
fying networks to accelerate attractor calculation. The proposed
algorithm is effective to calculate all attractors for large-scale
Boolean networks. If the average degree of the network is not too
large, our method can get all attractors of a Boolean network with
dozens or even hundreds of nodes.

2. Results

2.1. Mathematical model and properties

In this study the synchronous updating mechanism is only
considered for analyzing Boolean networks.

A directed network is composed of n nodes = { … }V v v v, , , n1 2 .
At each discrete time step ≥t 0, each node vi has a Boolean state

∈ { }s 0, 1i and forms a network state = ( ) = ( ( ) ( ) …X X t s t s t, , ,1 2
( ))s t .n The set of Boolean functions = ( … )f f f f, , , n1 2 can be ex-

pressed as follows:

( + ) = ( ( )) ( ∈ { … }) ( )s t f X t i n1 1, , , 1i i

or

( + ) = ( ( )) = ( ( ( )) … ( ( ))) ( )X t f X t f X t f X t1 , , . 2n1

For a Boolean network, let the all input nodes of vi be
… ( ∈ { … })v v v i n, , , 1, ,i i ik1 2 , shown in Fig. 1.

Any a state of …v v v, , ,i i ik1 2 is called a input window of vi. Eq. (1)
can be simply illustrated as its logical table, shown in Table 1.

We also use a binary value that uniquely represents a function
by ( )= …( ) ( )

−
( )f s s s, , ,i

i i i
0 1 2 1k ( ∈ { … })i n1, , . Let g be a map, →g Z Z: ,

and here Z is a finite set. Denote ( ( )) = ( )( ) ( + )g g z g zi i 1

( ∈ = …)z Z i, 1, 2, 3, . The following conclusion is obvious.

Lemma 1. Let g be a map, →g Z Z: , and here Z is a finite

set. Then, for any ∈z Z0 , ( ) = ( ( ))( ) ( ) ( )g z g g zk p k
0 0 for some

> ( ∈ { …})k p k p, 0 , 1, 2, 3, .

Based on Lemma 1, for any an initial state = ( )X X 0 of Boolean
network, the system updates itself until the system reaches its
final states = { … } ( ≥ )−A X X X p, , , 1p0 1 1 , called an attractor. The
attractor could be a limit cycle ( > )p 1 or a steady state (p¼1). The
set of all states that converge to A forms an attractor basin. The all
states of attractors constitute an attractor state set. All states except
attractor states are called transient states ornon-attractor states.

For ⊆ = { … }M V v v v, , , n1 2 , ∈ { }| |y 0, 1M M is a set of | |M node
states, called a partial state. A partial state yM is contained in an-
other partial state XN if ⊆M N and each node ∈v Mi has the same
Boolean state in both yM and XN, and we also say XN containsyM. A
partial state yM is stable if it is contained in some attractor state. A
partial state yM is unstable if it is not contained in any an attractor
state. If a partial state XN (regardless the states of the other nodes)
will lead to a partial state yM after time k steps, we call XN is a k-
predecessor of yM, and denote

⏟
≺⋯≺y

k

XM N . It is obvious that we

can get all predecessors of a partial state yM and thus construct
predecessor maps which have a tree-like structure.

For a gene regulatory network, an attractor often represents a
special biological function, and therefore the total number of at-
tractors is not so many, otherwise it will lose its biological sig-
nificance. The directed networks have their in-degrees and out-
degrees (the numbers of edges into and out of each node) in-
dependently. The edge into (out) a node is also called an in-edge
(out-edge). In addition, for a directed network, the average in-de-
gree is equal to the average out-degree. In this study, the average
in-degree or the average out-degree also is called average degree.
We study the average degree of gene regulatory networks is
generally not large (such as less than 3). The total states of attract
state set are not too large, because there are not so many of at-
tractors. It is obvious that a lot of states (including the partial
states) do not appear in attractor state set. Thus, it provides us the
possibility to efficiently calculate attractors according to the fea-
tures of attractor state set.

In theory, as long as we exclude all non-attractor states in total
state space of a Boolean network, we will get all attractor states.
Correspondingly, we will get all attractors of a Boolean network.
But for a large-scale Boolean network, it is extremely time con-
suming to exclude all non-attractor states. In fact, this process just
as the full enumeration of the state space is impossible to perform
the calculation of attractors. Therefore, we should as many as
possible to exclude non-attractor states, so that left as less as
possible the remaining states. As long as we traverse these re-
maining states, we will get all attractors of a Boolean network.
There are three key steps. Firstly, the process of exclusion non-
attractor states cannot be any error. Otherwise we may not get all
attractors. Secondly, we must as many as possible exclude non-
attractor states. Thirdly, the process must be efficient to reduce
computation.

Non-attractor state is closely related to the unstable partial
states. Here, we first introduce some related theorems.Fig. 1. Node vi and its input node ( )= …v j k1, 2, ,i j .

Table 1
Logical table of Boolean function fi.

Input window fi

( … ) = ( … )( )s s s, , , 0, 0, , 0i i ik1 2
0 ( )s i

0

( … ) = ( … )( )s s s, , , 1, 0, , 0i i ik1 2
1 ( )s i

1

( … ) = ( … )( )s s s, , , 0, 1, , 0i i ik1 2
2 ( )s i

2
⋮ ⋮

( … ) = ( … )( − )s s s, , , 1, 1, , 1i i ik
k

1 2
2 1

−
( )s k
i

2 1
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