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H I G H L I G H T S

� Existing statistical tests lack power for detecting under-dispersion in sex ratios.
� We introduce two statistical models of under/over-dispersion.
� A Bayesian inference scheme is derived for model selection and parameter estimation.
� This significantly improves our ability to detect under-dispersion in small samples.
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a b s t r a c t

Optimal sex allocation theory is one of the most intricately developed areas of evolutionary ecology.
Under a range of conditions, particularly under population sub-division, selection favours sex being al-
located to offspring non-randomly, generating non-binomial variances of offspring group sex ratios.
Detecting non-binomial sex allocation is complicated by stochastic developmental mortality, as offspring
sex can often only be identified on maturity with the sex of non-maturing offspring remaining unknown.
We show that current approaches for detecting non-binomiality have limited ability to detect non-bi-
nomial sex allocation when developmental mortality has occurred. We present a new procedure using an
explicit model of sex allocation and mortality and develop a Bayesian model selection approach (avail-
able as an R package). We use the double and multiplicative binomial distributions to model over- and
under-dispersed sex allocation and show how to calculate Bayes factors for comparing these alternative
models to the null hypothesis of binomial sex allocation. The ability to detect non-binomial sex allocation
is greatly increased, particularly in cases where mortality is common. The use of Bayesian methods al-
lows for the quantification of the evidence in favour of each hypothesis, and our modelling approach
provides an improved descriptive capability over existing approaches. We use a simulation study to
demonstrate substantial improvements in power for detecting non-binomial sex allocation in situations
where current methods fail, and we illustrate the approach in real scenarios using empirically obtained
datasets on the sexual composition of groups of gregarious parasitoid wasps.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The null model of sex allocation theory is the Düshing–Fisher
theory of equal investment (West, 2009). When populations are
both large and have unbiased sex ratios, selection for variance in
the sexual composition of offspring groups is predicted to be ab-
sent (Kolman, 1960). Under these conditions mothers will not be
selectively penalized if they randomly allocate sex to offspring,

with fixed probability of p¼0.5 that the offspring is male, in-
dependently of the sex of previous offspring. Thus, the number of
males in each offspring group would have binomial variance, i.e.,

( − )np p1 , where n is the number of offspring. In smaller popula-
tions and under sex ratio bias ( ≠ )p 0.5 , stabilizing selection for
low sex ratio variance is predicted, i.e., variance less than ( − )np p1
(Verner, 1965; West, 2009). Selection on sex ratio variance is likely
to be strong when populations are structured into small re-
productive subgroups within which offspring mate with each
other on maturity and prior to the dispersal of the daughters (local
mate competition; Hamilton, 1967); here, selection favours the
evolution of low sex ratio variance, especially when one or a very
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few mothers contribute offspring to the locally mating group
(Green et al., 1982; Hardy, 1992; Nagelkerke and Hardy, 1994;
Nagelkerke, 1996; West and Herre, 1998). This is because low
variance maximizes the production of mated daughters, a close
correlate of maternal fitness. If one male is sufficient to mate
successfully with all females within a group and all offspring in the
group are progeny of one mother, then the optimal sexual com-
position is one male and the remainder of the group being females
(Green et al., 1982). Similar arguments predict low variance under
local resource competition (a generalization of local mate com-
petition) and its converse, local resource enhancement (Lambin,
1994). Variance in the number of males among groups lower than
expected under binomial sex allocation is known as under-dis-
persion, and sex allocation is then termed precise (Green et al.,
1982; Lambin, 1994; Nagelkerke, 1996).

Control of sex allocation can be detected in some organisms by
direct observation of sexually differential aspects of individual
offspring production, such as maternal movements during egg
laying, or the placement of offspring, or by non-random produc-
tion sequences (Cole, 1981; Hardy, 1992; Heinsohn et al., 1997;
Krackow et al., 2002; Khidr et al., 2013; Ambrosini et al., 2014) but
such evidence is not often available. Empiricists must more fre-
quently rely on the statistical analysis of offspring group sex ratios
to detect whether sex allocation is being controlled or whether it
is, for instance, binomial, as might be the null-expectation under
several chromosomal mechanisms of sex-determination (Avilés
et al., 2000; Krackow et al., 2002; Ewen et al., 2003; Macdonald
and Johnson, 2008; Postma et al., 2011). Furthermore, empirical
evaluations of sex ratio variance can provide tests of explicit pre-
dictions of sex ratio theory (e.g., Lambin, 1994; Morgan and Cook,
1994; Hardy and Cook, 1995; Hardy et al., 1998; Nagelkerke and
Sabelis, 1998; West and Herre, 1998; Kapranas et al., 2011; Khidr
et al., 2013; Bowers et al., 2013).

One practical problem often faced by investigations of sex ra-
tios and sex ratio variance is that information on the sexual
compositions of offspring is available at maturity but not at the
time of sex allocation, and it is not uncommon for some offspring
to die before maturity (e.g., Hardy et al., 1998; Dyrcz et al., 2004;
Ewen et al., 2004; Forsyth et al., 2004; Dietrich-Bischoff et al.,
2006; Øigarden and Lifjeld, 2013). Provided it has a stochastic
component, developmental mortality will act to increase the var-
iance of observed sex ratios, making initially under-dispersed data
appear closer to binomial. This effect is expected on logical
grounds (Section 3) and has been shown empirically both within
and across several species of organisms with group structured
mating (Hardy et al., 1998; Kapranas et al., 2011; Khidr et al., 2013;
see also Dyrcz et al. (2004) and Dietrich-Bischoff et al. (2006)).
Current statistical approaches to assessing sex ratio variance
(Krackow et al., 2002) are, however, based on the implicit as-
sumption that developmental mortality does not operate, and they
consequently lack power to detect non-binomiality, unless mor-
tality rates are low.

Our aim is to show that by introducing a model that represents
the biological processes that generated the data (sex allocation
followed by mortality) we can substantially improve our ability to
detect underlying biological behaviours. We also demonstrate the
advantage of using more descriptive statistical approaches such as
estimating effect sizes (with measures of confidence), rather than
relying on null-hypothesis significance testing, where the small
dataset sizes mean we often fail to clear an arbitrary significance
hurdle (usually α = 0.05) even when the data indicate phenomena
of interest. We begin by evaluating the performance, under de-
velopmental mortality, of the statistical methods commonly used
to detect non-binomial sex ratio variance. We find that the power
of these methods is adversely affected by developmental mortal-
ity. We then develop an alternative approach that explicitly

models the mortality process. This has much improved power for
detecting non-binomial sex allocation, particularly when there is
high mortality or datasets are small.

2. Terms and notation

We define some terms and notation before describing current
approaches and their limitations, and then introduce our new
approach for detecting non-binomial sex allocation. A summary of
the notation is provided in Table 1. The methods developed are
general, but are likely to most readily be applied to egg-laying
organisms such as birds, parasitoid wasps, fig wasps and phyto-
seiid mites (Hardy, 1992; Nagelkerke and Sabelis, 1998; West and
Herre, 1998; West, 2009; Bowers et al., 2013), and this is reflected
in the terminology we adopt (for a mammalian example see
Macdonald and Johnson, 2008). Assume that we have a dataset
containing data on C different clutches of eggs, all of which were
laid in comparable environmental conditions. Offspring group size
is called clutch size at the time of production (egg-laying) and
brood size at the time of offspring maturity: brood size is less than
clutch size when developmental mortality occurs.

A primary dataset consists of counts of the number of eggs and
their sex for each clutch. Let Ni denote the number of eggs laid in
the ith clutch, andMi be the number of those Ni eggs that are male.

A primary dataset is the collection { }( )
=

N M,i i i

C

1
. However, for most

empirical investigations Mi is not observed, as the sex of an off-
spring cannot be easily determined from the eggs: it is usual to
wait until the eggs hatch and develop to the point at which off-
spring sex can be discriminated (e.g., Dietrich-Bischoff et al., 2006;
Khidr et al., 2013). It is also usual that a proportion of the eggs fail
to mature, due to some form of developmental mortality, and
consequently their sex cannot be recorded.

A secondary dataset consists of counts of ni, the number of
offspring that reach maturity (brood size) and mi, the number of
those offspring that are male, with the complete secondary dataset

denoted { }( )
=

n m,i i i

C

1
. Although a small number of experiments

have been conducted where primary datasets are obtained, either

Table 1
Summary of notation used in this paper. Letters in bold font indicate vector

quantities, indices (e.g., ni) indicate an instance of that variable, and hats (e.g., p̂)
indicate estimates.

Symbol Definition

C Number of clutches in the dataset
N Number of eggs laid (primary)
M Number of eggs laid that are male (primary)
n Number of offspring that reach maturity (secondary)
m Number of males that reach maturity (secondary)
D The complete observed dataset, i.e., { }= ( ) =D n m,i i i

C
1

p Sex ratioa (proportion of eggs that are male)
ψ Dispersion parameter
λ Average clutch size
d Mortality rate

H H,0 1 Null and alternative hypotheses
U Test statistic for the Meelis' test
R Descriptive ratio contrasting observed and expected variance
s2 McCullagh's dispersion estimator

Clutch sizes observed in the data, i.e., { = }k n k j: for somej

vk Number of clutches of size k, i.e., ∑ = =i
C

ni k1

sk
2 Empirical variance of the number of males in clutches of size k

B01 Bayes factor for comparing H0 with H1

a Care needs to be taken with interpretation of p in the multiplicative binomial
model as p is no longer the expected sex ratio when ψ ≠ 0.
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