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HIGHLIGHTS

e We consider fluctuations in populations that follow stochastic logistic growth.

e We suggest why such populations should vary in their per-capita-variability (PCV).

e Variation in PCV implies abundance changes do not scale according to a power law.

e Correlation between PCV and mean abundance can explain empirical scaling exponents.
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Taylor's Power Law for the temporal fluctuation in population size (TL) posits that the variance in
abundance scales according to aM ?; where M is the mean abundance and a and b are the ‘pro-
portionality’ and ‘scaling’ coefficients. As one of the few empirical rules in population ecology, TL has
attracted substantial theoretical and empirical attention. Much of this attention focused on the scaling
coefficient; particularly its ubiquitous deviation from the null value of 2. Here we present a line of
reasoning that challenges the power-law interpretation of the empirical log-linear relationship between
the mean and variance of population size. At the core of our reasoning is the proposition that populations
vary not only with respect to M but also with respect to a; which leaves the log-linear relationship intact
but forfeits its power-law interpretation. Using the stochastic logistic-growth model as an example, we
show that ignoring among-population variation in a is akin to ignoring the variation in the intrinsic rate
of growth (r). Accordingly, we show that the slope of the log-linear relationship (b) is a function of the
among-population (co)variation in r and the carrying-capacity. We further demonstrate that local en-
vironmental stochasticity is sufficient to generate the full range of observed values of b, and that b can in
fact be insensitive to substantial differences in the balance between variance-generating and stabilizing
processes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

hundreds of species, with the slope of the linearized relationship
showing considerable variation; predominantly between 1 and the

Taylor's Power Law (TL) (Taylor, 1961; Taylor and Woiwod,
1980, 1982) invokes a power-law scaling relationships between
the variance in population size (V) and the mean size (M): V=aM ®.
Support for the law has accumulated over studies spanning
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2 (Fig. 1; Maurer and Taper, 2002, Keil et al., 2010). The temporal
TL, where the means and variances are calculated over time for a
set of geographically separated populations, is generally thought
to reflect processes that affect population dynamics and is one of
the fundamental empirical rules in population ecology.

When two quantities exhibit a power-law relationship, relative
change in one quantity will result in a proportional relative change
in the other; independent of the initial size of the quantities.
Viewing the mean-variance relationship as a power-law has two
attractive ecological implications. First, large and small popula-
tions within the set are all scaled versions of a shared basic
quantity: the ‘proportionality constant’ or ‘per-capita variability’;
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Taylor's Law exponent (b)

Aphids Birds Moths

Fig. 1. Violin plots of Taylor's Law exponents for Aphids (n=97), moths (263) and
birds (n=88) in Great Britain (data from Taylor and Woiwod, 1980, 1982).

a; with M as the scaling factor. Secondly, systems that share the
same scaling coefficient, b, potentially share the same underlying
dynamics (i.e. scale invariance). These implications, along with the
departure of most observed values of b from the null expectation
of 2 (Hanski, 1982; Kilpatrick and Ives, 2003), attracted numerous
attempts to explain TL. As TL has been documented also in non-
ecological systems (reviewed in Eisler et al., 2008), some of these
attempts focused on universal, context-independent explanations
(Kendal 2004; Cohen and Xu, 2015; Xiao et al., 2015); including
the potential for statistical artifacts due to sampling (Kalyuzhny
et al,, 2014; Giometto et al., 2015). Others remained focused on the
ecological processes that may underly the empirical phenomenon,
such as demographic stochasticity (Anderson et al., 1982), negative
interspecies interactions (i.e. direct and indirect competition; Kil-
patrick and Ives, 2003) and uncorrelated reproductive effort
among individuals (Ballantyne and Kerkhoff, 2007).

A common feature of the ecological explanations is that the
effect of the putative mechanism on the variance is itself depen-
dent on population-size. This dependency is needed as fluctua-
tions driven solely by environmental stochasticity are expected to
result in b=2 (Hanski, 1982; Kilpatrick and Ives, 2003). A second
feature is that the second TL parameter — the per-capita variability
a, has attracted far less attention. A power-law is defined when
observations are homogenous with respect to a. Hence, the in-
ference of TL from a log-linear mean-variance relationship ne-
cessarily assumes that all the populations within the set under
consideration share the same the per-capita variability. Below we
question this assumption; proposing that it lacks ecological justi-
fication and has thus led to a potentially flawed perspective of the
mean-variance relationship. We begin with a general view of what
it means for a to vary across populations, and of the statistical
consequences of this variation, before moving to consider how
such variation may arise in natural populations.

2. Statistical perspective

Conceptually, the per-capita variability equals the expected
variance of population-size when its mean abundance is 1. Since a
random variable which is multiplied by a constant has its variance
multiplied by that constant squared, a randomly fluctuating po-
pulation of mean size M should exhibit a variance of aM 2. For a set
of such populations, each with a different value of a, the ordinary-
least-squares slope (b) of the mean-variance relationship can be

shown (Appendix A, Egs. (A.1a)-(A.1d)) to be a function of the
correlation between In(a) and In(M), r,, and the ratio of their
standard deviations, qqm

b=2 + faM
qa,M (])

As expected, with zero variance in a, the slope equals 2.
However, once a is allowed to vary among populations, negative
values of rq will necessarily drive b below 2; more so for smaller
values of qq (Fig. 2A. See Table 1 for a summary of the symbols).
We are thus left with the task of identifying how such a negative
correlation (r4) < 0) could arise in natural populations?

3. Ecological perspective

Consider, for analytical simplicity, the logistic growth model
with environmentally-induced stochastic fluctuations:

vironmentally-induced stochastic fluctuations in the maximum
per-capita rate of change, r; z is a Gaussian noise variable with a
zero mean and unit variance; and u is the carrying-capacity. The
(approximated) stationary distribution arising from this model is
gamma (Dennis and Patil, 1984), with mean M; = E(N;) = o;6; and
variance V(N;) = o;0;?; where a; and@ ; are the shape and scale
parameters of the i™ population, respectively. We can thus re-
write the variance as

V(N = 1/ai(@i6? = 1/aE(N:) @

This formulation suggests that the proportionality constant in
TL, V;=aM,, should be replaced by a; =1/a;. Hence, by keeping a;
constant across populations one necessarily assumes that «, or the
factors that affect it, are of little ecological consequence (i.e. they
do not contribute to among-population variation in M or V).

With the stochastic version of the logistic growth model, o and
O themselves are a function of the demographic parameters r and
u (Maurer and Taper, 2002, Linnerud et al., 2013. Appendix A, Eq.
(A.2)). Accordingly, we can write,

2
1 1 1
v(N)= vi—1 [Ui( LV]] V-1 Mz,
1 1 1 (3)

V(N)=- [Vi—_l]2= L

vi—1 Oi vi—1 4)
where v = 2r/c? is the relative intrinsic growth rate and §=2c/c?
is the relative density dependence, with ¢ as the intensity of
density-dependence (see Appendix A, Egs. (A.3) and (A.4) for
derivation).

Egs. (3) and (4) show the dependence on v of both the mean-
abundance (M) and its ‘proportionality constant’; the per-capita
variability: a; = 1/(v;—1). Hence, studies that keep a constant
across populations must either: 1) fail to recognize the depen-
dence of a on v - e.g. Maurer and Taper (2002), who allowed for
variation in v, kept a constant and continued to investigate how a
and b dictate the relationship between v and &; or 2) implicitly
assume that variation in M is driven solely by variation in & and
that v is constant across populations - e.g. Linnerud et al. (2013),
who used a form of Eq. (2) to demonstrate b=2 under environ-
mental stochasticity.

Variation in r is common among natural populations (e.g. Sibly
et al., 2005). As such, it can be shown (Appendix A, Egs. (A.5a-f))
that, for populations that follow Eq. (2), the mean-variance re-
lationship should have a slope of



Download English Version:

https://daneshyari.com/en/article/6368949

Download Persian Version:

https://daneshyari.com/article/6368949

Daneshyari.com


https://daneshyari.com/en/article/6368949
https://daneshyari.com/article/6368949
https://daneshyari.com

