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H I G H L I G H T S

� Analysis and numerical simulations of a model based on an age-dependent stochastic process.
� Optimal path theory and the quasi-steady state approximation show properties related to fluctuations.
� Dynamics of a stochastic heterogeneous population under resource limitation conditions.
� Explore the effects of noise-induced heterogeneity on the emergence of drug resistance.
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a b s t r a c t

We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular
populations. We illustrate our methodology with a particular example in which we study a population with an
oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells
within the population are characterised by their age (i.e. time elapsed since they were born). The age-de-
pendent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle pro-
gression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which
dictates the time evolution of the cell population. The population is under a feedback loop which controls its
steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that
our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by
stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this
set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which
essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this
simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical
methodology. A further result is the observation that heterogeneous populations undergo an internal process of
quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as
radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the popu-
lation contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if
the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to
emergence of resistance to therapy since the rescued population is less sensitive to therapy.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Global cell traits and behaviour in response to stimuli, the so-
called phenotype, results from a complex network of interactions

between genes and gene products which ultimately regulates gene
expression. These networks of gene regulation constitute non-
linear, high-dimensional dynamical systems whose structure has
been shaped up by evolution by natural selection, so that they
exhibit properties such as robustness (i.e. resilience of the phe-
notype against genetic alterations) and canalisation (i.e. the ability
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for phenotypes to increase their robustness as time progresses).
These properties are exploited by tumours to increase their pro-
liferative potential and resist to therapies (Kitano, 2004). In addi-
tion to complex, non-linear interactions within individual cells,
there exist intricate interactions between different components of
the biological systems at all levels: from complex signalling
pathways and gene regulatory networks to complex non-local
effects where perturbations at whole-tissue level induce changes
at the level of the intra-cellular pathways of individual cells
(Alarcón et al., 2005; Ribba et al., 2006; Macklin et al., 2009; Os-
borne et al., 2010; Deisboeck et al., 2011; Powathil et al., 2013;
Jagiella et al., 2016). These and other factors contribute towards a
highly complex dynamics in biological tissues which is an emer-
gent property of all the layers of complexity involved.

To tackle such complexity, multi-scale models of biological
systems as diverse as cardiac systems (Smith et al., 2004; McCul-
loch, 2009; Hand and Griffith, 2010; Land et al., 2013), systems of
developmental biology (Schnell et al., 2008; Oates et al., 2009;
Hester et al., 2011; Setty, 2012; Walpole et al., 2013), and tumour
growth systems (Alarcón et al., 2005; Jiang et al., 2005; Ribba et al.,
2006; Macklin et al., 2009; Owen et al., 2009; Preziosi and Tosin,
2009; Tracqui, 2009; Byrne, 2010; Lowengrub et al., 2010; Osborne
et al., 2010; Rejniak and Anderson, ; Deisboeck et al., 2011; Perfahl
et al., 2011; Travasso et al., 2011; Durrett, 2013; Powathil et al.,
2013; Szabo and Merks, 2013; Chisholm et al., 2015; Curtius et al.,
2015; Scott et al., 2016; Jagiella et al., 2016) have been developed.
In parallel to the model development, algorithms and analytic
methods are being developed to allow for more efficient analysis
and simulation of such models (Alarcón, 2014; Spill et al., 2015; de
la Cruz et al., 2015; Spill et al., 2016).

In the case of cancer biology, the multi-scale interactions of
intracellular changes at the genetic or molecular pathway level
and tissue-level heterogeneity can conspire to generate un-
fortunate effects such as resistance to therapy (Merlo et al., 2006;
Gillies et al., 2012; Greaves and Maley, 2012; Chisholm et al., 2015;
Asatryan and Komarova, 2016). Heterogeneity plays a major role in
the emergence of drug resistance within tumours and can be of
diverse types. There is heterogeneity in cell types due to increased
gene mutation rate as a consequence of genomic instability and
other factors (Merlo et al., 2006; Greaves and Maley, 2012;
Chisholm et al., 2015; Asatryan and Komarova, 2016). Hetero-
geneity can also be caused by the complexity of the tumour mi-
croenvironment (Alarcón et al., 2003; Gillies et al., 2012; Chisholm
et al., 2015), in which diverse factors such as tumoural or immune
cells (Kalluri and Zeisberg, 2006, Grivennikov et al., 2010), or the
extracellular matrix and its physical properties (Spill et al., 2016),
strongly influence cancer cell behaviour. Note that hypoxia is also
known to change the tumour microenvironment (Spill et al., 2016).
In either case, heterogeneity within the tumour creates the ne-
cessary conditions for resistant varieties to emerge and be selected
upon the administration of a given therapy.

The main aim of this paper is to analyse the properties of
heterogeneous populations under the effects of fluctuations both
within the intracellular pathways which regulate (individual) cell
behaviour and those associated to intrinsic randomness due to
finite size of the population. To this purpose, we expand upon the
stochastic multi-scale methodology developed in Guerrero and
Alarcón (2015), where it was shown that such a system can be
described by an age-structured birth-and-death process, instead of
a branching process (Danesh et al., 2012; Durrett, 2013). The
coupling between intracellular and the birth-and-death dynamics
is carried out through a novel method to obtain the birth rate from
the stochastic cell-cycle model, based on a mean-first passage time
approach. Cell proliferation is assumed to be activated when one
or more of the proteins involved in the cell-cycle regulatory
pathway hit a threshold. This view allows us to calculate the birth

rate as a function of the age of the cell and the extracellular oxygen
in terms of the associated mean-first passage time (MFPT) pro-
blem (Redner, 2001). The present approach differs from that in
Guerrero and Alarcón (2015) in that our treatment of the in-
tracellular MFPT is done in terms of a large deviations approach,
the so-called optimal path theory (Freidlin and Wentzell, 1998;
Bressloff and Newby, 2014).

This methodology allows us to explore the effects of intrinsic
fluctuations within the intracellular dynamics, in particular a
model of the oxygen-regulated G1/S which dictates when cells are
prepared to divide, as a source of heterogeneous behaviour: fluc-
tuations induce variability in the birth rate within the population
(even to the point of rendering some cells quiescent, i.e. stuck in
G0) upon which a cell-cycle dependent therapy acts as a selective
pressure.

This paper is organised as follows. Section 2 provides a sum-
mary of the structure of the multi-scale. In Section 3, we give a
detailed discussion of the intracellular dynamics, i.e. the stochastic
model of the oxygen-regulated G1/S transition, and its analysis. In
Section 4, we summarise the formulation of the age-structured
birth-and-death process, the numerical simulation technique, and
the mean-field analysis of a homogeneous population. In Section 5,
we discuss how noise within the intracellular dynamics induces
heterogeneity in the population and analyse the stochastic dy-
namics of competition for a limited resource within such hetero-
geneous populations. In Section 6 we further study the effects of
noise-induced heterogeneity on the emergence of drug resistance
upon administration of a cell cycle-specific therapy. Finally, in
Section 7 we summarise our results and discuss our conclusions as
well as avenues for future research.

2. Summary of the multi-scale model

Before proceeding with a detailed discussion of the different
elements involved in the formulation of the stochastic multi-scale
model, it is useful to provide a general overview of the overall
structure of the model, which is closely related to that of the
model proposed in Alarcón et al. (2005).

The model we present in this article integrates phenomena
characterised by different time scales, as schematically shown in
Fig. 1. This model intends to tackle the growth and competition of
cellular populations under the restriction of finite amount of
available resources (in this case, oxygen) supplied at a finite rate, S̄.

The general approach used in this model is a natural general-
isation of the standard continuous-time birth-and-death Markov
process and its description via a Master Equation (Gardiner, 2009).
As we will see, the consideration of the multi-scale character of
the system, i.e. the inclusion of the physiological structure asso-
ciated with the cell-cycle variables, introduce an age-structure
within the population: the birth rate depends on the age of cell
(i.e. time elapsed since last division) which determines, through
the corresponding cell-cycle model, the cell-cycle status of the
corresponding cells.

The evolution of the concentration of oxygen, c(t), (resource
scale, see Fig. 1) is modelled by:
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where NT is the number of cellular types consuming the resource c,
and Ni(t), = …i N1, , T , is the number of cells of type i at time t.
Note that, in general, Ni(t) is a stochastic process, and, therefore, in
principle Eq. (1) should be treated as a stochastic differential
equation (Oksendal, 2003).

The second sub-model considered in our multi-scale model,
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