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H I G H L I G H T S

� A way to quantify the number of independent signal in a phylogenetic data set.
� Can be extended to non-normal models of trait evolution.
� Can be used for model selection and applied for quantifying biodiversity.
� Can be used to assess importance of clade and phylogenetic inertia.
� The R software package mvSLOUCH is extended with the pESS.
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a b s t r a c t

In this paper I address the question—how large is a phylogenetic sample? I propose a definition of a
phylogenetic effective sample size for Brownian motion and Ornstein–Uhlenbeck processes—the re-
gression effective sample size. I discuss how mutual information can be used to define an effective sample
size in the non-normal process case and compare these two definitions to an already present concept of
effective sample size (the mean effective sample size). Through a simulation study I find that the AICc is
robust if one corrects for the number of species or effective number of species. Lastly I discuss how the
concept of the phylogenetic effective sample size can be useful for biodiversity quantification, identifi-
cation of interesting clades and deciding on the importance of phylogenetic correlations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the reasons to introduce phylogenetic comparative
methods (PCMs) in the words of Martins and Hansen (1996) was
to address the problem of statistical dependence. They called the
issue the “degrees of freedom” or “effective sample size” problem. If
we have n species related by a phylogenetic tree, unless it is a star
phylogeny, then our effective sample size is less than n (in extreme
cases even one). Taking into consideration the number of in-
dependent observations is important in evaluating the accuracy of
parameter estimation or hypothesis tests. The performance of such

statistical procedures depends on the number of independent data
points and not on the observed number of data points (Martins
and Hansen, 1996). Ignoring the correlations (and hence inflating
the sample size) results in too narrow confidence intervals, in-
flated p-values and power. All of this leads to type I and II errors of
which the user may be oblivious of.

In a phylogenetic context the calculation of the effective
number of observations has not been often addressed directly.
In statistical literature effective sample size (ESS) is usually para-
meter specific, it can be understood as “the number of in-
dependent measurements one would need to reach the same
amount of information about a parameter as in the original data”
(Faes et al., 2009)—in other words how many independent points
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do we have for estimating a particular parameter. Nunn (2011, p.
145) points out that often phylogenetic comparative methods have
been viewed in a restricted manner as a “degrees of freedom”

correction procedure that “reduce the number of data points”, due
to the nonindependence. Most phylogenetic comparative methods
work in the following way—one assumes a model and maximizes
the likelihood under that model. Hence, the issue of ESS, as
mentioned above, has been taken care of but only for the esti-
mation problem. In other situations, as Nunn (2011) following
Pagel (1993) reminds, the “degrees of freedom analogy can be
misleading”. It is more important how the variance is partitioned
among species. In fact, in the case of model selection, or when one
wants to know how many “independent” taxa one has e.g. for
conservation purposes the situation becomes much more complex.
As we will see, it is more important how the covariance is
structured.

Smith (1994) directly approached the problem of effective
sample size. He studied interspecies phenotypic data by a nested
ANOVA and “Determination of the taxonomic levels that account for
most of the variation can be used to select a single level at which it is
most reasonable to consider the data points as independent”. From the
perspective of modern phylogenetic comparative methods this is a
“hack”, as Smith (1994) himself wrote “the method improves the
nonindependence problem but does not eliminate it”. From our
perspective his work is important, as from the nested ANOVA setup,
he partitioned the variance into components from different levels
of the phylogeny and then defined the effective sample size as

= (# )( )

+ (# )( )

+ (# )( )

+ (# )( ) ( )

n of superfamilies PVC for superfamilies
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of genera PVC for genera

of species PVC for species 1
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where PVC is percentage of variance component. Smith (1994)
importantly notices that in principle “The method does not require
that levels of the nested hierarchy are defined by taxonomic cate-
gories.” In this work I develop the idea described in Smith (1994)'s
own words: to “consider each species as some fraction of a free ob-
servation varying between 0 and 1.0, a value could be computed …

that would reflect the balance between constraint and independent
evolution. This value is defined as the effective sample size (effective N)
for the data set and trait, as opposed to the traditionally used observed
sample size (observed N).” Building up on the modern development
of stochastic models for phylogenetic comparative methods, I do
not have to restrict myself to partitioning the data into hierarchical
levels containing different fractions of the variance, but rather look
holistically at the dependence pattern induced by the tree and
model of evolution. This might make it impossible (but maybe not
always) to assign to each species (or taxonomic level) its fraction of
free observations but as we shall see it will allow me to calculate
the sum of fractions of free observations.

An analysis of phylogenetically structured phenotypic data of-
ten has as its goal to identify the mode of evolution, i.e. is the trait
(s) adapting (and if so to what trait/phenotype) or rather ex-
hibiting neutral evolution. Information criteria like the Akaike
Information Criterion (AIC Akaike, 1974), Akaike Information Cri-
terion corrected for small sample size (AICc Hurvich and Tsai,
1989) or Bayesian Information Criterion (BIC Schwarz, 1978) are
commonly used to identify the model better supported by the
data. However, if one goes back to the derivation of the AICc

(Hurvich and Tsai, 1989) and BIC (Schwarz, 1978) one can see that
the n observations are assumed independent. Therefore a phylo-
genetic comparative model seems to violate this assumption, in
the best case by inflating the sample size. In a way such an infla-
tion corresponds to not penalizing enough for additional

parameters. However in their original paper Hurvich and Tsai
(1989) derive the same AICc formula for autoregressive models so
this warrants further study in the phylogenetic setting where the
covariance structure is hierarchical.

Therefore, using the number of species (unless the phylogeny is a
star) results in a risk of overfitting for small phylogenies or those
with most speciation events near the tips. In this work I propose a
way of taking into account the effective number of species during the
model selection procedure. The newest version of mvSLOUCH
(available from http://cran.r-project.org/web/packages/mvSLOUCH/
index.html) allows for automatic model selection if one treats n as
the true sample size and also if one corrects for the dependencies
using an effective sample size. Importantly, mvSLOUCH allows for an
arbitrary pattern of missing data—no observation is removed and the
likelihood is based on all provided information. Using this new ver-
sion of mvSLOUCH, I include in this work a simulation study and
analyze a number of data sets to see how much a difference does it
make whether, one uses the observed or effective number of species
for model selection. In most cases, the two ways of counting species
lead to the same conclusion. However, for small samples (see Table 3)
using the effective number of species can result in a different out-
come. In fact, we should expect this to be so, a good correction
method should be robust—with enough observations the data (or
rather likelihood) should decide no matter how one corrects. It is
only with few observations (and hence little power) that correction
methods should play a role by pointing to different possibilities of
interpreting the observed data.

2. Effective sample size

Effective sample size is intuitively meant to represent the
number of independent particles of data in the sample. If the
sample is correlated, then each observation will only have a cer-
tain fraction of the information it carries particular to itself. The
rest of the information will be shared with one/some/all other
points in the sample. We would like to quantify what proportion
of the whole sample is made up of these independent bits of in-
formation. If this proportion is p, then our phylogenetic effective
sample size (pESS) will be =n pne . However our situation is a bit
different. It is reasonable to assume that we have at least one
observation—at least one species described by at least a single
trait. One way is to define p to be between 1 and n1/ . Alternatively
we can define as

= + ( − ) ( )n p n1 1 , 2e

where ∈ [ ]p 0, 1 . I will call this p of Eq. (2) the phylogenetic ESS
factor. The value n n/e is useful in practice to compare between
different sized phylogenies and I will call it the relative phyloge-
netic ESS.

Martins and Hansen (1996) point out, that in the discrete trait
case, the ESS cannot be greater than the number of independent
evolutionary changes regardless of the number of observed spe-
cies. Maddison and FitzJohn (2015) very recently remind us of this
again. Phylogenetic comparative methods are there to take care of
“pseudoreplicates” due to the tree induced correlations. However,
especially in the discrete case, tests of significance might have
inflated power as one uses the number of species instead of the
(unknown) number of independent evolutionary changes. Un-
fortunately, at the moment, there does not seem to be any solution
for this problem (Maddison and FitzJohn, 2015). Hopefully the
phylogenetic effective sample size concept presented here could
indicate a direction for finding one. An alternative potential ap-
proach in the discrete case, is phylogenetic informativeness based
on the number of mutations (i.e. changes) shared by tip taxa under
the Poisson process (Mulder and Crawford, 2015; Townsend,
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