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HIGHLIGHTS

e A compact pairwise model for epidemics with a non-Markovian infectious period is constructed.

o The size of the model does not depend on the degree distribution.

e The model is extended to analyse the impact of clustering in the contact network.
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This paper presents a compact pairwise model describing the spread of multi-stage epidemics on net-
works. The multi-stage model corresponds to a gamma-distributed infectious period which interpolates
between the classical Markovian models with exponentially distributed infectious period and epidemics
with a constant infectious period. We show how the compact approach leads to a system of equations
whose size is independent of the range of node degrees, thus significantly reducing the complexity of the
model. Network clustering is incorporated into the model to provide a more accurate representation of
realistic contact networks, and the accuracy of proposed closures is analysed for different levels of
clustering and number of infection stages. Our results support recent findings that standard closure
techniques are likely to perform better when the infectious period is constant.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of infectious diseases have proven to be an
invaluable tool in understanding how diseases invade and spread
within a population, and how best to control them (Anderson and
May, 1991; Diekmann et al., 2012; Pastor-Satorras et al., 2015). Given a
good understanding of the biology of the disease and of the behaviour
and interaction of hosts, it is possible to develop accurate models with
good predictive power, which provide the means to develop, test and
deploy control measures to mitigate the negative impacts of infectious
diseases, a good example being influenza (Ferguson et al., 2006).
However, as has been highlighted by the recent Ebola outbreak in
West Africa (Chowell and Nishiura, 2014), models can be very situa-
tion-specific and can become highly sophisticated or complex
depending on intricacies of the structure of the population and the
characteristics of the disease.

In the last few decades the use of networks to describe inter-
actions between individuals has been an important step change in
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modelling and studying disease transmission (Keeling, 1999;
Danon et al., 2011; Keeling and Eames, 2005; Pastor-Satorras et al.,
2015). There is now overwhelming empirical evidence that in
many practical instances individuals interact in a structured and
selective way, e.g. in the case of sexually transmitted diseases
(Liljeros et al., 2001). Thus, the well-mixed assumption of early
compartmental models (Kermack and McKendrick, 1927) has to be
relaxed or models need to be refined by including multiple classes
and mixing between classes. However, in some cases a network
representation could be more realistic than a description based on
compartmental models. Conventionally, nodes in network-based
models represent individuals, and the edges describe connections
between people who have sufficient contact to be able to transmit
the disease (Keeling and Eames, 2005; Danon et al., 2011; Pastor-
Satorras et al., 2015). This study focuses on static undirected net-
works, in which the edges of the network do not change over time,
and all connections are sufficient to transmit the disease in either
direction. The total number of edges a node has is known as its
degree, and the frequency of nodes with different degrees is de-
termined by a specific degree distribution P(k) which can either be
empirically measured or given theoretically. In either case P(k) is
the probability of a randomly chosen node having degree k. Early
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network models often assumed regular networks where all nodes
have the same degree, or well-studied networks from graph the-
ory, such as the Erdés-Rényi random graphs (Erdés and Rényi,
1959). However, empirical research showed that real biological,
social or technological networks do not conform to such idealised
models. In fact, many studies on human interactions ranging from
sexual contact networks (Liljeros et al., 2001) to using the travel of
banknotes as an indicator of human activity (Brockmann et al.,
2006), or even internet connectivity (Caldarelli et al., 2000) have
observed wide-tail distributions, with the majority of nodes having
a low number of contacts, and a few nodes in the network having a
much higher degree. This structure is most closely approximated
by scale-free networks described by a power-law degree dis-
tribution P (k) ~ k-« with some positive exponent ¢, which for
most accurately described human contact patterns lies in the
range «a € [2, 3] (see, for example, Pastor-Satorras and Vespignani,
2001). The impact of contact heterogeneity on the spread of epi-
demics is significant, and studies have highlighted the dispropor-
tionate role which may be played by a few highly connected nodes
(James et al., 2007).

Another striking feature of real social contact patterns is the
presence of small and highly interconnected groups which occur
much more frequently than if edges were to be distributed at
random. This is known as clustering, and its presence in empirical
data (Newman et al., 2001; Foster et al., 2011) has driven the need
to consider network models that include this feature. Perhaps, one
of the most well-known and parsimonious theoretical models
with tuneable clustering is the small-world network (Watts and
Strogatz, 1998), where nodes are placed on a ring, and the network
is dominated by local links to nearest neighbours with a few links
rewired at random, which means that the average path length is
not too large and comparable to that found in equivalent random
networks. For a summary of numerous alternative algorithms that
can be used to generate clustered networks see, for example,
Green and Kiss (2010) or Ritchie et al. (2014). It is well known that
modelling epidemic spread on such networks is more challenging,
although some models have successfully incorporated clusterings
(Miller, 2009; Karrer and Newman, 2010b; Volz et al., 2011; Ritchie
et al., 2015, and references therein). However, it is often the case
that such models only work for networks where clustering is in-
troduced in a very specific way, e.g. by considering non-over-
lapping triangles or other subgraphs of more than three nodes.

Besides the details of the network structure, another major
assumption that significantly reduces the mathematical com-
plexity of models and makes them amenable to analysis with
mean-field models of ordinary differential equations and tools
from Markov chain theory is the assumption that the spreading/
transmission of infection and recovery processes are Markovian.
However, it has long been recognised that this is often not the
case, and, for example, the infectious periods are typically far from
exponential, and, perhaps, are better described by a normal-like or
peaked distribution (Gough, 1977; Lloyd, 2001; Wearing et al.,
2005). Modelling non-Markovian processes can be challenging
and often leads to delay differential or integro-differential equa-
tions that are much more difficult to analyse. Recently, Kiss et al.
(2015) have put forward a generalisation of a pairwise model for
Markovian transmission with a constant infectious period for a
susceptible-infected-recovered (SIR) dynamics, with a further re-
cent extension by the same authors to an arbitrary distribution of
the recovery time (Rost et al., 2016). The first generalisation re-
sulted in a model given by a system of delay differential equations
with discrete and distributed delays which makes it possible to
gain insight into how the non-Markovian nature of the recovery
process affects the epidemic threshold and the final epidemic size.
Other important recent research in this direction includes the
message passing formalism (Karrer and Newman, 2010a;

Wilkinson and Sharkey, 2014) and an approach based on renewal
theory (Cator et al., 2013).

In light of the importance of the above-mentioned network
properties (i.e. degree heterogeneity and clustering) and the non-
Markovian nature of the spreading and/or recovery processes, in this
paper we generalise our recent research on a multi-stage SIR epi-
demics (Sherborne et al., 2015) and focus on modelling a Markovian
spreading process with gamma-distributed infectious period on
networks that account for heterogeneous degree distribution and
clustering. This is achieved within the framework of pairwise
models (Keeling, 1999), and we show that the additional model
complexity induced by degree heterogeneity and non-Markovian
recovery can be effectively controlled via a reduction procedure
proposed by Simon and Kiss (2015). This allows one to derive an
approximate deterministic model that helps numerically determine
the time evolution of the epidemic and the final epidemic size.
Moreover, the model allows us to gain insights into the interactions
of the three main model ingredients, namely, degree heterogeneity,
clustering and non-exponential recovery and the agreement be-
tween the model and the stochastic network simulation. The paper
is organised as follows. In the next section we derive a compact
pairwise model for unclustered networks whose size is independent
of the range of degrees and derive and discuss some analytical re-
sults for this model. All results are validated by comparing the nu-
merical solution of the pairwise model to results from direct sto-
chastic network simulation. In Section 3, we investigate the case
when the same epidemic unfolds on clustered networks. The cor-
responding pairwise model is derived, and we discuss the extra
complexities necessary to more accurately approximate the spread
of the disease. More importantly, we investigate how clustering and
the non-Markovian recovery affect the agreement between the
pairwise model and simulations. Finally, in Section 4 we conclude
with a discussion of our results and future work.

2. Disease dynamics in the absence of clustering

As a first step in the analysis of the spread of epidemics on
unclustered networks, we introduce the necessary concepts from
multi-stage infections and pairwise models (Sherborne et al.,
2015). In the SI“R model, once a susceptible individual S becomes
infected, they progress through K equally infectious stages de-
noted as I®, 1 <i<K. The transition rates between successive
stages are given by Ky. Thus, in simulation the times spent in each
of the K stages are independent exponentially distributed random
numbers. The total time of infection is, therefore, the sum of K
exponential distributions, which is a gamma distribution with the
mean time of y~! (Durrett, 2010). In order to describe the dy-
namics of an epidemic we consider the state of the nodes in the
network and the edges connecting them. Since a susceptible in-
dividual can only become infected upon a transmission across an
S — 19 link we need to consider the expected number of edges
connecting susceptible and infected individuals in any stage i from
1 to K at time t over the whole network, to be denoted as [SID](t).
Here we have taken [SI?] independently of the degrees of the
nodes in state S and 9, ie. [SI?] = P [Sall‘f)] where a and b
denote the degrees in the range between the minimum and
maximum degrees in the network, denoted as k,;, and kpqy, re-
spectively. This definition applies to all pairs, i.e. [AB] stands for the
population level count of all A — B edges taken across all possible
connections between nodes of different degrees;

[ABl= Y [AqBy], and A, Be (S IV, 12, . I®, R}=s.
a,b

Here and henceforth $ will denote the set of all possible states for
a node. The expected number of S — S edges depends on the
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