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a b s t r a c t

The purpose of the study is to investigate the multicellular homeostasis in epithelial tissues over very
large timescales. Inspired by the receptor dynamics of IBCell model proposed by Rejniak et al. an on-grid
agent-based model for multicellular system is constructed. Instead of observing the multicellular ar-
chitectural morphologies, the diversity of homeostatic states is quantitatively analyzed through a sub-
stantial number of simulations by measuring three new order parameters, the phenotypic population
structure, the average proliferation age and the relaxation time to stable homeostasis. Nearby the in-
terfaces of distinct homeostatic phases in 3D phase diagrams of the three order parameters, intermediate
quasi-stable phases of slow dynamics that features quasi-stability with a large spectrum of relaxation
timescales are found. A further exploration on the static and dynamic correlations among the three order
parameters reveals that the quasi-stable phases evolve towards two terminations, tumorigenesis and
degeneration, which are respectively accompanied by rejuvenation and aging. With the exclusion of the
environmental impact and the mutational strategies, the results imply that cancer and aging may share
the non-mutational origin in the intrinsic slow dynamics of the multicellular systems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There long exists a scientific conundrum on how cancer initiates.
Despite the fact that many oncogenes or tumor suppressors have
been revealed in a large amount of studies, accumulating evidences
indicate that cancer initiation involves ingredients other than the
genetic deficiency (Barillot, 2013). Cancer, as conventionally de-
fined, is an uncontrolled cell growth, which could also be regarded
as a large deviation of cell phenotypes from their homeostatic
states. The dynamics of phenotypic structure is not driven merely
by subcellular genetic mutations, but also by a heterogeneous in-
fluence from both the extracellular micro-environment and the
intracellular interactions (Marusyk et al., 2012). In addition, cancer
is a chronic disease featuring a very long period of incubation for
the malignancy. In study of the origin of cancer, the multi-scale
modeling and simulation of cancer in silico become a powerful
approach, thanks to the tremendous computational power of
modern supercomputers. Multi-scale simulations enabled us to
understand the complicated intricacy of multi-scale factors and the
emergent phenomena in many different biological systems (Deis-
boeck and Stamatakos, 2011). One of those multi-scale biological
models is IBcell (Rejniak, 2007, 2012; Rejniak and Anderson, 2008a,
2008b; Rejniak et al., 2010), which is established for the simulation

of acini formation through a receptor dynamics sensing ex-, intra-
and sub-cellular cues during a cell cycle. IBcell can reproduce four
self-organized acini morphologies, showing the existence of
homeostatic diversity. An inspiring result is that the tumor-like
morphology emerges from the cell cycle regulation without any
predefined requisites, which indicates a causal relationship be-
tween the homeostatic diversity and tumorigenesis.

While the mainstream study on cancer initiation focused on the
evolutionary picture of accumulating mutational damages due to
environmental stress (Merlo et al., 2006; Attolini and Michor, 2009),
the homeostatic diversity sheds light on a different scenario of cancer
initiation: the shift from one homeostatic state to another and this
shift could last a very long time period with the consideration that
cancer is a chronic disease. To specify the mechanism underlying the
shift of states, three questions are of great interest: (1) What are the
differences among these homeostatic states? (2) What are the con-
trol parameters critical to the shift of state? (3) What roles does the
genetic mutations play in the shift? Motivated by these questions, we
think it essential to simulate the homeostasis formation on a much
larger timescale (than that of IBcell simulations).

In IBcell simulations, the time duration is difficult to extend to a
large enough scale, because it consumes a huge computational
resource for the calculation of fluid mechanics. However, mor-
phology is not the sole representation of homeostatic states; in-
deed the key property of homeostatic diversity could rather be the
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dynamically heterogeneous behaviors of cell phenotypes. Hence
we propose, in this study, a new mesoscopic cell-based model (or
usually called agent-based model) for the behaviors of different
cell phenotypes to attain a higher computational efficiency at the
sacrifice of morphological information.

To build the new model, we reform the continuously formulated
receptor dynamics in IBcell to a set of the cell behaviors in a spa-
tiotemporally discrete manner of agent-based model (ABM). ABMs
have been applied to simulations of cancer development (reviewed
in Wang et al. (2015)) because of the simplicity and flexibility when
incorporating the multi-scale interaction for a multicellular system.
Here we employ the ABM to simplify the fluid mechanics and re-
ceptor dynamics in IBcell in order to enable the large timescale si-
mulations of diverse multicellular homeostases. In our model, the
behaviors of an agent (or a cell), are executed in several sequenced
cell cycle functions, which are triggered when various types of the
receptors hit their thresholds. Cell behaviors will change the inter-
actions between cell-extracellular matrix (ECM, the amount of ex-
tracellular matrix secreted by the cell during its growth) and local

neighbors, through adjusting the configuration of cell receptors in a
simplified discrete style. Due to the simplicity and flexibility of our
model, all the information in the system could be tracked to facil-
itate reliable statistical analyses even under the multicellular het-
erogeneity through a large-timescale evolution.

Even without a detailed representation of cell morphologies,
various kinds of homeostatic states can be observed in our model
correspondently in terms of a new order parameters: the structure of
phenotypic populations. Apart from the stable homeostatic states,
many intermediate quasi-stable states also emerge in the simulation.
In these quasi-stable states, the order parameter changes steadily but
slowly, where the relaxation timescale could extend from 104 to over
108 time steps. It is worth mentioning that both tumorigenesis and
aging process are found to originate from these quasi-stable states.
Roles of the main factors such as growth signals, apoptosis, cell ar-
rest, cell-cell adhesion, cell–ECM adhesion etc. in forming the diverse
phenotypic population structures of homeostasis are discussed.

The details of the cell-based model will be elaborated in Sec-
tion 2. The simulation results, the phase diagrams and the statis-
tical analysis of each states will be presented in Section 3. We will
have some discussions on the robustness and verification in Sec-
tion 4. Section 5 summarizes the study and give some concluding
remarks on the phase diagram and the effect of major parameters.

2. Model

2.1. Space and cell

The simulation space is a two dimensional (2D) normal lattice
where each node has four neighbors under a periodic boundary
condition. All nodes are distributed with environmental elements
such as growth factors and nutrients. In the current stage, the
environmental elements are set in a uniform and constant dis-
tribution. Each node can be occupied at most by one cell.

A cell is expressed in this model by a virtual data structure
without visible cell membrane and subcellular organs. This data
structure contains instant information of a cell from three level of

Table 1
Cell data structure. The receptor amount and ECM concentrations are dynamic
variables, whereas the threshold T and profile P are parameters which are preset.
The topological information of the network is decided by l r t b, , , in profile P, and
they are fixed in all simulations in this study as long as the space is set to be a 2D
regular lattice.

Cell data structure

Receptor amount R ECM E Threshold T Profile P

Rg Growth receptor ECM g Growth threshold n Node number

Rh Adhesion
receptor

p Polarization
threshold

γ Growth factor

RE ECM receptor e ECM threshold l Left neighboring node
Ra Arrest receptor a Arrest threshold r Right neighboring

node
Rd Death receptor g Growth threshold t Top neighboring node

h Adhesion threshold b Bottom neighboring
node

Table 2
Discrete receptor dynamics and cell behaviors. Refer to Appendices A and B for the detailed demonstration of Adhere functions for the cell-cell adhesion (AD1 function) and
the cell–ECM adhesion.

Conditions Cell behaviors Receptor dynamics

+ <R R Mg h AND Not Arrested Grow γ[ + ] = ( + ) [ ]R t R t1 1g g

[ + ] = [ ] − ( [ ] + [ ] + [ ])E t sR t c R t R t R t1 g h a d

None Adhere [ + ]R t 1a ¼AD1{ ( [ ]R R tneighbor g þ [ ]R th )}

[ + ] = ( [ ] )R t MIN E t e R1 / ,E scr g

∆ [ ]= − ∆ [ ]−∆ [ ]R t R t R tg h E

(∆ *[ ] ≡ *[ + ] − *[ ]R t R t R t1 )
>R ph AND >R eE Polarize [ + ] = [ ]+ [ ]R t R t a R t1a a scr h

<R ph OR <R eE Not polarize [ + ] = [ ]+ ( [ ] + [ ])R t R t d R t R t1d d scr h a

[ + ]=( − )R t d1 1h scr [ ]R th

[ + ]=( − )R t d1 1a scr [ ]R ta

Not Arrest >R aa Restriction point Entry into Arrest

Arrest < >R a R gANDa g Exit from Arrest

+ >R Rg h M AND Not Arrested Proliferate

Empty Send a new cell with [ + ] =R t 1 Bg
daughter

[ + ] = [ ]T t T t1daughter

[ + ] =R t B1a

No space None
<R dd Suicide [ + ] =R t 1 0, [ + ] =T t 1 0

+ <R R ha E Move Appendix C
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