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H I G H L I G H T S

� Assumptions of mean payoffs and proportional selection are relaxed.
� Truncation selection is analyzed for replicator dynamics.
� The stable states of truncation selection and the RE coincide for constant variance.
� If all payoff variances are not equal, then cooperation can be stable.
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a b s t r a c t

The replicator equation has been frequently used in the theoretical literature to explain a diverse array of
biological phenomena. However, it makes several simplifying assumptions, namely complete mixing, an
infinite population, asexual reproduction, proportional selection, and mean payoffs. Here, we relax the
conditions of mean payoffs and proportional selection by incorporating payoff distributions and trun-
cation selection into extensions of the replicator equation and agent-based models. In truncation se-
lection, replicators with fitnesses above a threshold survive. The reproduction rate is equal for all sur-
vivors and is sufficient to replace the replicators that did not survive. We distinguish between two types
of truncation: independent and dependent with respect to the fitness threshold. If the payoff variances
from all strategy pairing are the same, then we recover the replicator equation from the independent
truncation equation. However, if all payoff variances are not equal, then any boundary fixed point can be
made stable (or unstable) if only the fitness threshold is chosen appropriately. We observed transient and
complex dynamics in our models, which are not observed in replicator equations incorporating the same
games. We conclude that the assumptions of mean payoffs and proportional selection in the replicator
equation significantly impact replicator dynamics.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The range of applications of evolutionary dynamics is great, and
includes fields such as animal behaviour (Dugatkin and Reeve,
1998) to economics (Dopfer, 2005; Friedman, 1991, 1998).
Introduced in Maynard Smith (1982), evolutionary game theory
has bloomed in the last few decades as a means of explaining
biological phenomena (Hammerstein et al., 1994; Hofbauer and
Sigmund, 2003; Nowak and Sigmund, 2004). Examples of evolu-
tionary dynamics include Brown–von Neumann–Nash, imitation,
best response, and replicator dynamics (Hofbauer and Sigmund,

2003). In particular, replicator dynamics is immensely important,
with applications that span such fields as genetics, ecology,
chemistry, and sociology (Schuster and Sigmund, 1983).

Replicators are the focus of replicator dynamics. They are agents
that can replicate themselves with, potentially, mutations. The
evolutionary dynamics determine the change in frequencies of
these agents over time. Commonly, we envisage this process as
selection of replicators for survival and reproduction. ‘Fit’ replicators
survive to reproduce, which determines the replicator frequencies
in the next generation. The replicator equation is frequently used in
this framework to model the frequency dynamics of replicators due
to proportional selection, where the increase in frequencies of re-
plicators is proportional to the difference between their fitness and
the average fitness of the population (Taylor and Jonker, 1978).

The replicator equation makes several assumptions: the
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population is infinite; if the elements of the payoff matrix are
stochastic, the replicators earn the mean payoffs; each replicator
interacts with every other replicator non-preferentially; and se-
lection is proportional. Much work has explored relaxations of
these assumptions with other replicator dynamics, and develop-
ment of further evolutionary stability concepts (Nowak and Sig-
mund, 2004; Ohtsuki and Nowak, 2008). Examples include finite
populations (Taylor et al., 2004), heterogeneity (Bergstrom and
Godfrey-Smith, 1998), networks (Roca et al., 2009; Szabó and Fath,
2007), and stochasticity (Traulsen et al., 2006).

Other selection methods have been employed in the literature
(Bäck et al., 2000; Blickle and Thiele, 1995; Ficici et al., 2000). In
truncation selection, after players have interacted, we rank the
players from highest to lowest fitness, and a top fraction of the
population survives to reproduce. The reproduction rates are equal
for all survivors. The population is then normalized. The key dif-
ferences between this method and proportional selection are that
survival is dependent upon meeting a threshold fitness, that the
reproduction rate is identical for all surviving players. In propor-
tional selection, reproduction rates are proportional to the differ-
ence between the fitness of a player and the average fitness of the
population. This selection method is important in biology where
thresholds for survival exist, and because survival (and often re-
production) are binary events (they either happen or they do not).
In truncation selection, selection pressure is near the threshold for
survival and reproduction, and thus selection pressure is weaker at
the extreme high end of the fitness distribution; the system is not
selecting for excellence, but for adequacy.

Agent-based round-robin simulations have suggested that the
ESS is not a useful concept in biology when truncation selection is
used (Fogel et al., 1998; Fogel and Fogel, 2011). Oscillations and
apparent chaos may occur in such games, where the ESS predicts
no such phenomena. Further, the average population frequencies
are significantly different from the ESS. The difference between
these results and the ESS are due to selection at the extreme lower
ends of the payoff distributions of each replicator (caused by sto-
chastic elements of the agent-based models). Thus, the dis-
crepancy is due to asymmetric selection pressures on either side of
the ESS (Ficici et al., 2005; Ficici and Pollack, 2007).

The primary objective of our paper is to explore how relaxing
simplifying assumptions of the classic replicator equation —

namely, relaxing mean payoffs and proportional selection in fa-
vour of payoff distributions and truncation selection, respectively
— influence replicator dynamics and the corresponding evolu-
tionary stable states (ESSes). The assumptions made in the re-
plicator equation are for mathematical tractability. However, in
modelling biological systems, we should be wary of an axiomatic
approach that rests on such assumptions (Gintis, 2009; Mailath,
1998). To explore the relaxations to the mean payoff and propor-
tional selection assumptions, we develop and analyse truncation
equations and agent-based simulations.

2. Methods

Here we examine two assumptions of the replicator equation,
namely mean payoffs and proportional selection. We will show
that there are significant differences between models when both
of these assumptions are altered. Focussing on the Hawk–Dove
game, we will begin with a discussion of fitness distributions fol-
lowed by truncation selection methods.

2.1. Fitness distributions

The Hawk–Dove, Prisoner's Dilemma, Stag Hunt, and harmony
games (Axelrod and Hamilton, 1981; Skyrms, 2004; Sugden, 1986)

are important two player models of biological systems with a rich
body of literature. In contrast to the other games, the Hawk–Dove
game yields a stable interior equilibrium. We will primarily focus
on the Hawk–Dove game for our examples. It is set up as follows.

The Hawk–Dove game has two strategies: hawk, Sh, and dove,
Sd. Let there be a resource worth a payoff of 50 that may be gained
when any two players meet. If a hawk meets a dove, the hawk
receives the resource and the dove receives nothing. If, however, a
hawk meets another hawk, they fight. Each having an equal
chance of winning, the winner receives the resource, and the loser
is wounded, receiving a negative payoff, −100. If two doves meet,
they posture, attempting to intimidate each other, which has a
payoff cost of −10. With probability 0.5, a dove intimidates its
opponent thus receiving the resource as its opponent flees.
Therefore, the average payoff is 15. The following payoff matrix
represents these averages of the game:

= = −
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟A

a a
a a

25 50
0 15

.
1

hh hd

dh dd

This payoff matrix is used in the Hawk–Dove replicator equa-
tion. However, notice that in same strategy pairings, no player
receives these averages (e.g. between two doves, one will earn −10
and the other 40). As more pairings occur, the fitness (which is the
average of all the payoffs earned from the pairings) will approach
this average for most players. However, there will be players that
will receive much higher and much lower fitnesses.

To factor in the range of possible fitnesses that can be earned in
the Hawk–Dove game, we begin with observing the fitness dis-
tributions of each strategy pair. For simplicity, we will assume that
the fitnesses are normally distributed. Thus, for hawks, the mean
fitness of a hawk playing a hawk is μ = − 25hh , and the standard
deviation is:

σ = ( − ( − )) + ( − − ( − )) = ( )50 25 /2 100 25 /2 75. 2hh
2 2

So that we may have a normal distribution for hawks vs. doves,
let us assume that doves are quicker than hawks and thus may
take the resource before hawks arrive with probability 0.1.
Otherwise, the hawk receives the resource as usual. Table 1 sum-
marizes these parameter values.

Now, we may derive the fitness distribution for Si, which is
dependent upon the frequencies of hawks (xh) and doves (xd).
Since we have normal distributions for all strategy pairings, we
have that μ μ μ= +x xi ii i ij j, and σ σ σ= +x xi ii i ij j

2 2 2 2 2. The fitness
probability density function for xi is thus:
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In Section 2.4, we introduce independent and dependent
truncation, which model selection upon the fitness distribution
defined by Eq. (3).

2.2. The replicator equation

The replicator equation is a mean field model that incorporates
concepts from game theory. Replicators each have a strategy, Si,

Table 1
Parameter values for the Hawk–Dove game.

i j, μij sij

h h, �25 75

h d, 45 15

d h, 5 15

d d, 15 25
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