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H I G H L I G H T S

� Clustered ventilation defects are a hallmark of asthma observed in imaging studies.
� We present a new model of clustered ventilation defect formation in the lung.
� Noise-driven defect formation in asymmetric trees yields a combination of structural and dynamic defect formation.
� The reactance versus flow curve is bilinear, but the breakpoint is not coincident with the clustering bifurcation.
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a b s t r a c t

Imaging studies of asthmatics typically reveal clustered ventilation patterns, rather than homogeneous
ventilation; furthermore, the variation of these clusters suggests that the causes are at least partially
dynamic, rather than structural. Theoretical studies have indicated dynamic mechanisms by which
homogeneous ventilation solutions lose stability and clustered solutions emerge. At the same time, it has
been demonstrated experimentally that respiratory reactance characteristically has a bilinear relation-
ship with lung volume, and that changes to this relationship are indicative of various aspects of disease
progression and control. Moreover, the transition point in the bilinear reactance relationship is thought
to relate to reopening/recruitment of airway units, and thus may be connected to the bifurcation via
which clustered ventilation solutions emerge. In order to investigate this possibility we develop a new
model, including both airway–airway coupling and airway–parenchymal coupling, which exhibits both
clustered ventilation defects and also a bilinear reactance relationship. Studying this model reveals that
(1) the reactance breakpoint is not coincident with the bifurcation; (2) numerous changes to underlying
behaviour can alter the reactance breakpoint in ways which mimic the experimental data; and (3) the
location of ventilation defects can be a combination of both structural and dynamic factors.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustered ventilation defects are a hallmark of asthma, wherein
reversible airway narrowing occurs in a spatially organised way
such that both hypo- and hyper-ventilated regions emerge (e.g.
Tzeng et al., 2009; Layachi et al., 2013; Simon et al., 2012). Because
these regions can vary from event to event, the causes are thought
to be at least partially dynamic (Venegas et al., 2005; Leary et al.,
2014), as opposed to structural, and understanding how and why
they occur may shed light on the basic pathophysiology of asthma,
which is not well understood.

Several theoretical models have been developed which address
the formation of clustered ventilation defects (VDefs). Best known
is the computational work of Venegas, Winkler and colleagues,

based on Anafi and Wilson (2001) and extended to a symmetric
airway tree, beginning with Venegas et al. (2005) and used in
numerous subsequent studies (e.g. Winkler and Venegas, 2007;
Golnabi et al., 2014; Wongviriyawong et al., 2010; Winkler et al.,
2015; Leary et al., 2014). The model of Donovan and Kritter (2015)
employs similar ideas, but is constructed in such a way as to allow
some degree of analytic understanding of how and why clustered
VDefs occur (for example, analytic eigenvalues and eigenvectors
allow understanding of the unstable modes of the system). How-
ever Donovan and Kritter (2015) made a significant assumption in
neglecting the role of the conducting airway tree (airway–airway
coupling), instead of relying on interactions among physically
adjacent respiratory bronchioles and their dependent tissue (air-
way–parenchymal coupling) to drive clustered VDef formation.
This approach has two key drawbacks: (1) the neglected role of the
conducting airway tree is unclear and (2) without the upstream
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airways, it is difficult or impossible to incorporate models of
measured lung function.

Here we are driven to investigate the experimental results of
Kelly et al. (2012, 2013), which demonstrate the utility of mea-
suring respiratory reactance as a function of lung volume. These
authors show that this relationship is reliably bilinear, and that the
handful of parameters associated with that bilinear form are useful
markers of lung function, asthma severity and asthma control.
Furthermore, they postulate that the “breakpoint” in their bilinear
form is related to reopening/recruitment of airway units. Such a
transition, then, might be related to the bifurcation which occurs
between homogeneous and clustered ventilation in the models of
Donovan and Kritter (2015) and Venegas et al. (2005). The hy-
pothesis is made more plausible by other evidence of the re-
lationship between ventilation heterogeneity and impedance, e.g.
Kaczka et al. (2009, 2011) and Lutchen et al. (2001). Thus, one
interesting question is if the breakpoint and bifurcation are
coincident.

In order to answer this question, we first construct a new
model, based on Donovan and Kritter (2015), but now in-
corporating airway–airway coupling via flow through the con-
ducting airway tree. This is necessary, in the first instance, because
existing reactance (impedance) models require the behaviour of
the conducting tree, but it also has the significant advantage that
we are able to assess other theoretical implications of the pre-
viously neglected components.

This paper is then structured as follows. First, we augment the
model of Donovan and Kritter (2015) to incorporate a conducting
airway tree (with arbitrary geometry); this is not conceptually
difficult, but leads to challenges associated with the resulting
system of differential-algebraic equations (DAEs). Rather than at-
tempting to solve the DAEs directly, we instead present a proce-
dure which allows elimination of the algebraic constraints in any
tree, resulting in a system of ordinary differential equations only.
This eases both computational and theoretical issues considerably.

Using this newly developed model, then, we are able to show:
(1) the bifurcation between homogeneous and clustered ventila-
tion seen in Donovan and Kritter (2015) persists with the inclusion
of airway–airway coupling via flow through the conducting air-
ways; (2) the characteristic bilinear reactance relationship also
that occurs in this model, but (3) the breakpoint and bifurcation
that are not coincident. Instead the reactance breakpoint appears
to reflect a transition driven by the highly nonlinear relationship
between radius and impedance (and, because of the dependence
between flow and radius, between flow and impedance). We also
examine the locations and persistence of the locations of ventila-
tion defects; that is, the extent to which they are dynamic as op-
posed to structural.

We further consider the ways in which the bilinear reactance
parameters can be altered by the underlying system, suggesting
ways in which asthmatic pathophysiology may differ from non-
asthmatics; however, there are many potential combinations
which lead to the same sort of changes in that relationship, and
hence the inversion from observed data to underlying behaviour is
not unique.

2. Model

Here we develop a new model based on Donovan and Kritter
(2015) (which considers only the respiratory bronchioles), but
now with the inclusion of an arbitrary conducting tree. Many of
the underlying ideas are shared with Venegas and Winkler et al.
(Venegas et al., 2005; Winkler and Venegas, 2007; Golnabi et al.,
2014; Wongviriyawong et al., 2010; Winkler et al., 2015), and there
are structural similarities with Stewart and Jensen (2015).

The setup is simple: we have airway luminal radius (ri) and
flow (qi) in each airway, and pressure pj at each junction1; these
can be arranged in an arbitrary branching tree with = …i N1 air-
ways and = …j M1 junctions. We denote the boundary pressures
at the “top” of the tree ↑p (e.g. at the trachea in a full tree), and
driving pressure ↓p and the “bottom” of the respiratory bronchioles.
The arrangement is illustrated schematically in Fig. 1.

The evolution of these radii, pressures and flows is then given
by: (1) the airway dynamics (including narrowing driven by ASM);
(2) conservation of flow at the junctions; and (3) flow equations
along each airway. That is, for each airway we have dynamics gi-
ven by

( )ϕρ̇ = ( ) − ( )r p qr r r; , , 1i i i

based on Donovan and Kritter (2015) where ϕ is based on quasi-
static experimental measurements and the construction gives
first-order kinetics about those equilibria with timescale ρ. (Full
details of ϕ are presented in Section 2.2, but for now are neglected
for clarity.)

At each junction, we have conservation of flow

= + ( )q q q 2m d d1 2

where the notation here indicates the mother and two daughter
branches at each junction. We will later re-write this in terms of
connectivity matrices.

Then in each airway, we assume Poiseuille flow

αΔ = ( )−p r q 3i i i i
4

where Δpi is the pressure difference from top to bottom of the ith
airway (again, later in terms of connectivity matrices) and for
compactness of notation we have combined the parameters as-
sociated with the flow into a single constant αi for each airway.2

Fig. 1. Schematic illustration of model geometry and symbols. Two types of cou-
pling are considered: airway–airway coupling via flow through the conducting
airways (black and grey), and coupling via parenchymal interdependence (red).
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

1 Here we neglect the pressure loss factor of Lambert et al. (1982).
2 We present the model development in dimensional terms; units are para-

meter values are given in Appendix A.
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