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H I G H L I G H T S

� New mathematical foundation of steady-state assumption based on averages.
� Applies to oscillating and growing systems.
� Does not require quasi-steady-state assumption.
� Pinpoints unintuitive effects in the integration of metabolite concentrations.
� Can be used to approximate growth maximization in dynamic metabolic network models.
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a b s t r a c t

The steady-state assumption, which states that the production and consumption of metabolites inside
the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic
networks possible. It can be motivated from two different perspectives. In the time-scales perspective,
we use the fact that metabolism is much faster than other cellular processes such as gene expression.
Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism
that adapts to the changing cellular conditions.

In this article we focus on the second perspective, stating that on the long run no metabolite can
accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective
can be captured mathematically and what assumptions are required to obtain the steady-state condition.

By presenting a mathematical framework based on the second perspective we demonstrate that the
assumption of steady-state also applies to oscillating and growing systems without requiring quasi-
steady-state at any time point. However, we also show that the average concentrations may not be
compatible with the average fluxes.

In summary, we establish a mathematical foundation for the steady-state assumption for long time
periods that justifies its successful use in many applications. Furthermore, this mathematical foundation
also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear con-
straints into steady-state models for long time periods.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A rather frequently used assumption for metabolic network
modelling is that the production and consumption of internal
metabolites must balance (steady-state assumption). This as-
sumption lies at the core of many metabolic network analysis
techniques such as flux balance analysis (FBA) (Varma and Palsson,

1994; Orth et al., 2010), elementary flux mode analysis (Schuster
and Hilgetag, 1994), metabolic control analysis (Heinrich and
Schuster, 1998) or gene intervention studies (Hädicke and Klamt,
2011; Burgard et al., 2003).

Given the stoichiometric matrix S of a metabolic network, we
call a vector of reaction rates (fluxes) w a steady-state flux if it
satisfies

= ( )Sw 0. SS

In this paper we provide a new, mathematically sound deri-
vation of the steady-state condition using flux averages over time.
This derivation does not require any underlying theory on
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dynamics, like oscillations, in metabolic networks. While the bio-
logical motivation of our approach, as detailed in Section 1.2, is
well known (Fell, 1997; Steuer and Junker, 2009; Knoke et al.,
2008; Schuster and Fell, 2007; Palsson, 2015), the mathematical
foundation presented here strengthens the existing approaches
that study metabolism using steady-state fluxes.

The steady-state assumption, as used in metabolic network
analysis, is usually mathematically derived from a quasi-steady-
state perspective. This perspective is however not always applic-
able, as pointed out in Song and Ramkrishna (2009). Therefore, our
mathematical derivation presented here does not use the quasi-
steady-state argument. We nevertheless outline the quasi-steady-
state perspective below for the sake of comparison.

1.1. Classical derivation based on the quasi-steady-state assumption

To illustrate the differences between the existing theory and
our new derivation, we first recall how the steady-state assump-
tion is mathematically derived in the quasi-steady-state
perspective.

Given a kinetic model

̇( ) = ( ) ( ) = ( ( ) ( )) ( )t S t t f t tc v v e c, , KM1

that describes the dynamics of the internal metabolite con-
centrations c, reaction rates v and enzyme concentrations e, we
assume that the dynamics of the metabolism can be approximated
by a quasi-steady-state solution with respect to the enzyme dy-
namics. A quasi-steady-state solution of (KM1) is a tuple of time-
dependent functions ( )c v e, , such that

= ( ) ( ) = ( ( ) ( )) ≥ ( )S t t f t t t0 v v e c, , for all 0. QSS

Note that in the QSS solution the enzyme and metabolite con-
centrations can still change over time (the constraint on the me-
tabolite concentrations ̇( ) = ( )t S tc v is dropped) while fluxes tran-
sition from one metabolic steady-state to another, and are there-
fore not constant.

Indeed, as Varma and Palsson put it, “this assumption is based
on the fact that metabolic transients are typically rapid compared
to cellular growth rates and environmental changes. The con-
sequence of this assumption is that all metabolic fluxes leading to
the formation and degradation of any metabolite must balance”
(Varma and Palsson, 1994, p. 994). Similar reasons for assuming a
quasi-steady-state for metabolism are obtained by comparing the
time scale of metabolic processes (fast) to those of e.g. transcrip-
tional regulation or cell cycle (slow) (Almquist et al., 2014; Hein-
rich and Schuster, 1996; Moreira dos Santos et al., 2004). Hence, it
is assumed that at every time point the metabolite concentrations
have converged to a steady-state and thus the quasi-steady-state
assumption (QSS) follows (Schilling et al., 1999; Voss et al., 2003;
Waldherr et al., 2015).

The quasi-steady-state assumption found successful applica-
tions in dynamic simulation models like dynamic flux balance
analysis (dynamic FBA) (Mahadevan et al., 2002) and dynamic
enzyme-cost flux balance analysis (Waldherr et al., 2015).

There are, however, situations when the quasi-steady-state
assumption cannot be applied (Song and Ramkrishna, 2009; Behre
and Schuster, 2009), which means the derivation above cannot be
used. Therefore, the main result of this paper is a derivation that
does not need this assumption.

Before we continue with our new mathematical approach, it is
worth noting the difference between the steady-states in (QSS)
and the global steady-state used in classical metabolic network
analysis tools such as FBA.

Given (QSS), for every time point t, ( )tv is a steady-state flux.
Therefore, we consider the quasi-steady-state assumption a

time-local property. From this the steady-state condition =Sw 0 as
used in classical metabolic network analysis is derived. This sim-
plification allows for an efficient analysis of metabolic networks,
since metabolite concentrations and time do not need to be
modelled anymore. For example, the constraint =Sw 0 is used in
methods such as FBA to predict biomass yields and growth rates.

In FBA we use only one steady-state flux to describe the whole
growth cycle. This is what we call a time-global steady-state flux.
However, metabolic fluxes are not constant in time. For instance,
during the cell cycle the cell goes through different phases (G1, S,
G2 and M) during which the metabolic activity is different.
Therefore, the metabolism can be considered to use different time-
local steady-state fluxes that follow the division cycle. Since the
sum of steady-state fluxes yields another steady-state flux (i.e., if

=Sw 0 and =Sv 0, then ( + ) =S w v 0), by combining the time-
local steady-state fluxes we can obtain a time-global steady-state
flux for the whole growth cycle.

1.2. The perspective based on long time periods

However, we do not need time-local steady-states to obtain a
time-global steady-state. For example the steady-state assumption
is also often motivated by stating that no metabolite can accu-
mulate or deplete on the long run (Fell, 1997). The aim of this
paper is to provide a general mathematical framework based on
this idea. In particular, we will generalize the approach used in
Steuer and Junker (2009), and Knoke et al. (2008, 2010). They
observe that, if after a time T no net change Δ ( ) =Tc 0 has occurred

in the metabolite concentrations, we obtain ∫ ( ) =S t dtv 0.
T

0
Hence,

in this case, the average flux

∫˜( ) = ( ) ( )T
T

t dtv v:
1 AVGV

T

0

is also a steady-state flux. In contrast to the fluxes derived via the
quasi-steady-state assumption, it applies globally over the time
interval [ ]T0, . In particular, in cases where the quasi-steady-state
assumption is not entirely justified (see e.g. Song and Ramkrishna,
2009), one can still obtain a time-global steady-state.

Building upon the ideas in Section 1.5.2 of Steuer and Junker
(2009), we observe that, if we consider a long enough time period
T, we do not necessarily need to come back to the same con-
centration. In order to obtain an average steady-state flux we only
require that the concentrations stay bounded (see Fig. 1). While
this is implied by physical laws, it should also happen because
accumulation of metabolites in very high amounts is toxic for a
cell. Therefore, on the long run, to avoid such toxicity, every me-
tabolite should be produced, on average, at the same rate at which
it is consumed (Fell, 1997). Moreover, even if deterministic chaos is
rare in metabolic systems (Goldbeter et al., 2001), it is worth
noting that the theory developed here is also applicable to chaotic
and quasi-periodic systems if the attractor is bounded. Some ideas
in this direction can be found in Knoke et al. (2008).

As already pointed out in Eker and Krummenacker (2013), if we
consider long time periods, we also have to model the fact that
molecule counts per cell change because of cell growth. Therefore,
in the differential equation that models the change of concentra-
tions in time we also need to consider an additional term that
represents dilution via cell growth. Schuster et al. (2004) propose
to neglect this term since it is anyway “small” compared to the
intracellular fluxes.

Based on these observations, we present in Section 3 a math-
ematical perspective on the steady-state assumption that does not
need the quasi-steady-state argument, but instead considers flux
averages over time. Using this model we compute for how long
we have to observe the system to obtain a sufficiently good
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