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HIGHLIGHTS

« Diffusion with transient binding is a pervasive phenomena in biology, as small proteins, organelles, etc. undergo Brownian transport interspersed with

periods of stationarity at binding sites.

o High-speed microscopy has given researchers a vast amount of high quality data on these phenomena of transient binding.
e Using an EM algorithm along with particle filters, the model can be fit in a computationally efficient way.
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Diffusion with transient binding occurs in a variety of biophysical processes, including movement of
transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with tran-
sient binding as a Brownian particle undergoing Markovian switching between free diffusion when
unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming
the binding site is the last position of the particle in the unbound state and Gaussian observational error
obscures the true position of the particle, we use particle filtering to predict when the particle is bound
and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition
probabilities, and the spring constant in the bound state are computed with a stochastic Expectation—
Maximization (EM) algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Single particle tracking experiments provide high-resolution
time traces of proteins, lipids, viruses, and synthetic probes in
biofluids (Saxton and Jacobson, 1997; Joo et al., 2008). Statistical
analysis plays an increasingly important role in our understanding
of the dynamical processes observed in these experiments (Qian
and Kou, 2014). In particular, a significant amount of statistical
methodology has been developed and applied to the analysis of
particles switching between multiple diffusive states, henceforth
called regimes (Bosch et al., 2014). This paper focuses on switching
processes that can be described as diffusion interspersed with
transient periods of binding and on the related problems of pre-
dicting the unobserved regime of the particle, locating the binding
sites, and estimating model parameters.

A large body of research relates to cell membrane proteins
transiently binding to the cortical cytoskeleton or cytoskeletal-
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associated elements. Since binding reduces the mobility of a dif-
fusing protein, transient binding may explain why diffusing
transmembrane proteins have lower diffusion coefficients in cell
membranes than in artificial membranes (Jacobson et al., 1987;
Gennis, 1989). This behavior was qualitatively described in the
“transient interaction” model of Zhang et al. (1991, 1993), in which
cell membrane glycoproteins become transiently bound to trans-
membrane anchor proteins attached to and immobilized by the
cytoskeleton. The “conveyor-belt” model of Saxton (1994) for-
malizes and generalizes the transient interaction model by al-
lowing for directed flow of cytoskeletal elements. Transient
binding by cytoskeletal attachment may have a functional role as
well; for example, Cairo et al. (2006) suggest that transient bind-
ing of the lymphocyte function-associated antigen 1 (LFA-1) has a
regulatory effect on T cell adhesion.

Akin to transient binding is the temporary confinement of
diffusing particles in cage-like structures. This process is called
confined or corralled diffusion when membrane proteins or
phospholipids become trapped in membrane skeletal corrals
(Saxton and Jacobson, 1997). Corrals in the “picket-fence” model
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are created from transmembrane anchor protein “pickets” con-
nected by actin-filament “fences” (Fujiwara et al., 2002; Kusumi
et al., 2005). In microrheology experiments, transient confinement
is often called caging and has been observed in colloidal fluids
near the glass transition (Weeks and Weitz, 2002) and suggested
as the cause for the anomalous diffusion of particles in granular
materials and in a suspension of rod-like viruses (Marty and
Dauchot, 2005; Lettinga and Grelet, 2007). Transient binding may
also lead to anomalous diffusion in a variety of non-biological
systems and biofluids (Metzler and Klafter, 2000; Saxton, 2007),
although the relationship is not considered in this paper.

We model diffusion with transient binding as Markovian
switching between regimes of free Brownian diffusion and
Brownian diffusion in a quadratic potential centered around a
binding site, where the binding site is assumed to be the last po-
sition of the particle in the unbound regime. The model is placed
in a state space framework under the assumption of Gaussian
observational error, though other distributional assumptions can
be accommodated, allowing the use of particle filtering to predict
the unobserved regime, true position, and locations of the binding
sites. A stochastic Expectation-Maximization (EM) algorithm is
used to compute maximum likelihood estimates of model para-
meters, including diffusion coefficients, regime transition prob-
abilities, and the spring constant. The particle filter and the EM
algorithm are relatively simple to code, computationally in-
expensive, and numerically stable. Furthermore, they may be ap-
plicable to other switching models of interest in single particle
tracking.

The remainder of the paper is structured as follows. Section 2
presents our mathematical model for diffusion with transient
binding. In Section 3, we review the literature on models and in-
ferential methods for switching processes in single particle
tracking, show how the unobserved regimes of a particle are
predicted and the binding sites located using particle filtering, and
explain how this prediction enables parameter estimation using a
stochastic EM algorithm. Simulation results in Section 4 validate
the method, demonstrate robustness to the assumptions of a
Markovian regime switching process and quadratic potential, and
provide a setting to discuss model diagnostics.

2. Mathematical model

This section presents a physically motivated, continuous-time
mathematical model for a particle undergoing diffusion with
transient binding and explicitly connects it to a discrete-time
statistical model. The regime of the particle is assumed to follow a
continuous-time Markov chain {J()It >0, J(t) € {1, 2}}, where
1 represents the bound regime and 2 the unbound regime. Asso-
ciated with each regime is a transition rate A; parameterizing the
exponentially distributed time regime i is occupied before the
other regime is entered. For each time t > 0, the switching time
7(t) gives the most recent time the particle switched into the
current regime J(t), where we define 7z(0) = 0.

The position of the particle is denoted Z(t) = (Z\(t), Z2(t)). In
the bound regime, the particle dynamics are described as diffusion
in a quadratic potential centered around the binding site
Z(z (b)) = (Z'(z (1)), Z2(z (b)Y, so that

t t
Zt) = Z(z(t)) — Kfm [Zw - Z(z(t)] du + 2D, fm dW @),

where W (t) = (W(t), W2(t)) are independent, standard Brownian
motions and D; denotes the diffusion coefficient in regime i. The
constant « > 0 is interpreted as a linear-spring constant, where
larger x correspond to stiffer springs or tighter binding. In the
unbound regime, the particle undergoes free or possibly directed
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Fig. 1. Simulated trajectory from the proposed continuous-time, physical model (1)
with changes in position when bound and unbound marked in black and red, re-
spectively. Parameters are = (0,0)pm/s, «=9163s"1 Dj=0.03 um?fs,
Dy =0.21pum?2/s, 4 =20.8s"1, and 2 = 62.5s!. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

diffusion,
t t

Z(t) =Z@(t) + f Mdu+,\/2sz AW ),
7(t) z(t)

where the drift term p = (4, #,) is zero for undirected, free dif-
fusion. Combining the bound and unbound models for the position
of the particle yields the continuous-time, physical model for
diffusion with transient binding,

t t
Z0=260) + [ - [ [Z(u) - Z(r(t))] du+ 201 [ dW<u>] lyw=1)

+ [ fr(rt) w du + 2Dy /;:[) dW(u)]I(]([):z,, o
where I, is the indicator function defined as 1 if the expression in
the brackets is true and O otherwise. A realization of this model
appears in Fig. 1.

Additive, Gaussian observational error is assumed to obscure
the true position of the particle. Hence, the observed position of
the particle, denoted Y; = (Y}, Y2), is

Y = Zx + nex, k=1,2,3, .., 2)

where A denotes the time between observations, Z; = Z (k4), and
e, = (e}, e?y are independent sequences of independent Gaussian
random variables with mean zero and variance one. Without loss
of generality, the initial observed position is assumed to be
Yo = (0, 0y.

Following Das et al. (2009), the assumption that regime chan-
ges occur only at times of observation is made to facilitate in-
ference for the proposed continuous-time model. This assumption
enables the construction of an approximate discretization
of (1) which, as we show in Section 3.3, permits maximum like-
lihood-based inference. To construct the discretization, let
€ {0, 4, 24, ..., (k — 1)A} be the most recent observation time at
which the particle was in the unbound regime. Then, the as-
sumption implies that the discrete-time position process Z,
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