
Reconstruction of disease transmission rates: Applications to measles,
dengue, and influenza

Alexander Lange a,b,c,n

a Department of Mathematics and Statistics, McMaster University, Canada
b Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Germany
c Zuse Institute Berlin, Germany

H I G H L I G H T S

� Time series of transmission rates are reconstructed from disease-related data.
� Differential equations model the time evolution of infective stages and strains.
� The proposed numerical integration is fast but requires particular care.
� It is sensitive to the population size and reporting, insensitive to non-vital rates.
� Specific questions for three epidemics are answered using this methodology.
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a b s t r a c t

Transmission rates are key in understanding the spread of infectious diseases. Using the framework of
compartmental models, we introduce a simple method to reconstruct time series of transmission rates
directly from incidence or disease-related mortality data. The reconstruction employs differential
equations, which model the time evolution of infective stages and strains. Being sensitive to initial values,
the method produces asymptotically correct solutions. The computations are fast, with time complexity
being quadratic. We apply the reconstruction to data of measles (England and Wales, 1948–1967), dengue
(Thailand, 1982–1999), and influenza (U.S., 1910–1927). The Measles example offers comparison with
earlier work. Here we re-investigate reporting corrections, include and exclude demographic informa-
tion. The dengue example deals with the failure of vector-control measures in reducing dengue he-
morrhagic fever (DHF) in Thailand. Two competing mechanisms have been held responsible: strain in-
teraction and demographic transitions. Our reconstruction reveals that both explanations are possible,
showing that the increase in DHF cases is consistent with decreasing transmission rates resulting from
reduced vector counts. The flu example focuses on the 1918/1919 pandemic, examining the transmission
rate evolution for an invading strain. Our analysis indicates that the pandemic strain could have circu-
lated in the population for many months before the pandemic was initiated by an event of highly in-
creased transmission.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Essential for modeling an infectious disease epidemic is the
knowledge of the transmission rates—the rates at which suscep-
tibles become infected by contagious individuals (Anderson and
May, 1991; Grassly and Fraser, 2008). These rates are determined
by the contact behavior of the involved hosts as well as the risk of
transmission during contact, they are specific to the pathogen and

its transmission route (Lange and Ferguson, 2009). Transmission
rates fluctuate and often systematically change over time as we
will examine in this paper for data of three different infections.

Combined with basic medical and demographic information,
transmission rates are the most natural reference in predicting the
time evolution of disease prevalence. Public health policies rely on
such predictions, referring to the control of endemic infections and
to the design of measures against emerging diseases, pandemics,
or bio-terroristic threats (Ferguson et al., 2005; Fraser et al., 2009;
Legrand et al., 2009). In practice, however, there is no straight-
forward way these rates are obtained from epidemiological data.
The methods known are rather complicated and/or require lots of
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computing power (Finkenstadt and Grenfell, 2000; Bjornstad et al.,
2002; Morton and Finkenstadt, 2005; Cauchemez and Ferguson,
2008; Hooker et al., 2011; Word et al., 2012, 2013), others have a
limited range of application at this stage (Pollicott et al., 2011;
Hadeler, 2011a, 2011b; Mummert, 2013; Kong et al., 2015). Ad-
dressing these issues, we will present a simple method for re-
constructing transmission rates from incidence or mortality data
and illustrate its wide range of application.

There are lots of computing and modeling strategies in in-
fectious disease epidemiology, including probabilistic simulations
(Morton and Finkenstadt, 2005; Cauchemez and Ferguson, 2008),
networks (Read and Keeling, 2003; Keeling and Eames, 2005), and
compartmental models (Kermack and McKendrick, 1927; Ander-
son and May, 1991), to mention a few. The conceptually simplest
and mathematically most tractable ones fall into the last category.
In compartmental models, transmissions between hosts are as-
sumed to happen at random, incorporated through versions of the
mass-action principle (Heesterbeek, 2005). Formulated in terms of
differential equations, these models keep track of the numbers of
susceptible, infective, and recovered individuals (SIR), as well as
other relevant compartments of the host population. The trans-
mission mechanism is implemented by a (time-dependent) coef-
ficient, the transmission rate β. Normalized with respect to the
removal rate of infectives λ, in simple susceptibles-infectives
models, the resulting unit-free number β λ= /0 defines the basic
reproductive ratio of infections (Diekmann et al., 1990)—a para-
meter well-known because of its importance for disease control
and pathogen evolution (Anderson and May, 1991; Lange and
Ferguson, 2009).

Whereas disease incidence and mortality define quantities of
major interest to public health, transmission rates offer the more
natural parameter in characterizing how a disease system is
changing over time. Due to the internal dynamics, disease pre-
valence often behaves strangely, for example, shows biennial time
patterns even if infection is forced by an annual period (known for
measles Fine and Clarkson, 1982; Earn et al., 2000) or increases
even if risk factors are decreasing (reported for dengue Thamma-
palo et al., 2008). Prevalence is sensitive to initial conditions and
time resolution, it even shows chaotic behavior (Earn et al., 1998).
The kind of information that can be captured by transmission rates
will be illustrated here for three examples: measles during the
pre-vaccination era, the currently re-emerging dengue epidemic,
and the Spanish flu pandemic.

The measles example will be used to develop the method. It
offers a test for the reconstruction results and its systematic errors.
Measles data from England and Wales have been studied ex-
tensively, and much is known about the temporal pattern of
transmissions (Fine and Clarkson, 1982; Bjornstad et al., 2002;
Cauchemez and Ferguson, 2008).

Epidemiological data are tainted with reporting errors, in-
cluding missing or false diagnoses. To correct for these errors the
concept of the reporting proportion has been introduced (e.g., Fine
and Clarkson, 1982; Bjornstad et al., 2002). In addition to the re-
porting proportion known from the literature, we introduce a
second one, enabling the definition of an effectively constant po-
pulation, useful when demographic information is insufficient.

Besides focusing on technical questions—regarding para-
meters, errors and extensibility to new compartments—we will
study epidemiological questions and illustrate how the re-
construction can be applied to obtain conceptual results. Here
dengue represents a generic example. Increasing cases of dengue
hemorrhagic fever (DHF) in Thailand must be explained based on
decreasing transmission rates (Thammapalo et al., 2008). Our
method allows for re-evaluating former explanations based on
strain interaction (Nagao and Koelle, 2008) and demographic
transitions (Cummings et al., 2008). The third application is the

influenza pandemic 1918/1919, relying on mortality data from the
U.S. Here we will use the reconstruction method to investigate
irregularities prior to the pandemic peak, referred to as herald
waves (Taubenberger and Morens, 2006).

2. Methods

In this section we develop the procedure for reconstructing
transmission rates from time series data. Measles infections are
used as the main example. For other diseases the methodology
(including the precise meaning of the variables, cf. Index) requires
adjustments, as we illustrate for two other infections in Results.

2.1. Basic model

One of the simplest settings for an infectious disease epidemic
is given by a system of three first order differential equations,

Γ β Σ′ = [ ] − [ ] ( )S S I R S I, , , 1a

β Σ λ′ = [ ] − ( )I S I I, 1b

γ ρ′ = − ( )R I R. 1c

These equations determine the time evolution of compartments,
S I, , and R, which in respective order quantify the numbers of
susceptible, infective, and recovered individuals (Kermack and
McKendrick, 1927). Their sum,

= + + ( )N S I R, 2

represents the size of the host population. Usually, this number
differs from population data published in demographic reports
(e.g., Hicks and Allen, 2006); it only includes parts of the popu-
lation. Most obviously this applies to sexually transmitted infec-
tions where the host population only includes sexually active
individuals.

Utilized as balance equation (i.e., replaced by ν μ′ = −N N), the
derivative of (2) determines the rate,

Γ ν μ δ Θ= − + + [ ] ( )S R I R, , 3

at which individuals enter, leave, and (possibly) re-enter the sus-
ceptible compartment—through birth ν, death μS, and (e.g., for
flu-like infections) after loss of immunity δR. The remaining term
(cf. A.1),

Θ λ γ μ ρ δ μ= ( − − ) + ( − − ) ≈ ( )I R 0, 4

obtained by adding the three Eqs. (1) and comparing the result to
(3), incorporates disease-induced mortality rates specific to the
compartments I and R. For many epidemics these rates can be
neglected. The recovery rate and the decay of immunity are then
given by γ λ μ= − and δ ρ μ= − , respectively. Though, in our third
example (pandemic influenza), Θ > 0.

The number of transmissions is determined by the rate at
which susceptibles become infected. This rate, βΣ , which defines
removal in (1a) and incidence in (1b), involves a functional and a
coefficient. The functional, Σ( )↦ [ ]S I S I, , , represents the contacts
between infected and susceptible individuals; usually it is mod-
eled via mass-action (Heesterbeek, 2005),

Σ = ( )SI N/ . 5

Refined models contain fractional powers of S and I (Liu et al.,
1987). The coefficient, β, defines the transmission rate—the para-
meter we intend to reconstruct from time series data.
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