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H I G H L I G H T S

� Derivation of a novel set of ‘discrete-time moment equations’ at the level of individual nodes and pairs of nodes.
� Introduction of appropriate approximations of the joint probabilities appearing in the ‘discrete-time moment equations’ to close them.
� Formulation of two types of model: one assuming statistical independence at the level of individuals and one at the level of pairs.
� Derivation of a model at the level of the population which captures the behavior of epidemics on homogeneous random networks.
� Validation of the proposed models through numerical simulation over different network topologies.
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a b s t r a c t

Understanding the dynamics of spread of infectious diseases between individuals is essential for fore-
casting the evolution of an epidemic outbreak or for defining intervention policies. The problem is
addressed by many approaches including stochastic and deterministic models formulated at diverse
scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (sus-
ceptible–infectious–removed) dynamics propagated on contact networks. We derive a novel set of
‘discrete-time moment equations’ for the probability of the system states at the level of individual nodes
and pairs of nodes. These equations form a set which we close by introducing appropriate approxima-
tions of the joint probabilities appearing in them. For the example case of SIR processes, we formulate
two types of model, one assuming statistical independence at the level of individuals and one at the level
of pairs. From the pair-based model we then derive a model at the level of the population which captures
the behavior of epidemics on homogeneous random networks. With respect to their continuous-time
counterparts, the models include a larger number of possible transitions from one state to another and
joint probabilities with a larger number of individuals. The approach is validated through numerical
simulation over different network topologies.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Epidemic modeling is a continuously evolving field that is
increasingly important for understanding the spread of infectious
diseases, investigating outbreak scenarios, and identifying pre-
vention and control policies (Pastor-Satorras et al., 2015; Fu et al.,
2013). For example, mathematical models of the 2014 West Africa
Ebola outbreak have provided valuable quantitative analysis for
assessing the risk of international virus diffusion, the impact of
travel restrictions, and the effectiveness of intervention strategies
(Gomes et al., 2014; Poletto et al., 2014; Merler et al., 2015).

Early models of the spread of infectious diseases were based on
deterministic ordinary differential equations (Anderson et al.,
1992; Heesterbeek, 2000) using the assumption of homogeneous
mixing between individuals in the population (that is, any two
individuals are equally likely to interact at any time, Pastor-
Satorras et al., 2015), and provided a description of the epi-
demics at the level of the population. With the introduction of
complex networks (Newman, 2003; Boccaletti et al., 2006) into
epidemics models, the hypothesis of homogeneous mixing was
removed by explicitly incorporating the heterogeneity of the
interaction pattern among individuals (Pastor-Satorras and Ves-
pignani, 2001; Lloyd and May, 2001). These models and the related
theoretical approaches to understanding their critical properties
(Moreno et al., 2002; Newman, 2002; Barthélemy et al., 2004)
have been widely studied. The investigation of network-based
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approaches has led to the development of microsimulation mod-
els, able to track billions of individuals, and used to perform sto-
chastic simulations of entire populations at the scale of single
individuals, by explicitly taking into account the spatial structures
and individual heterogeneity that can be inferred from the analysis
of available datasets on the structure of human interactions, their
mobility and contact patterns (Merler et al., 2011; Gomes et al.,
2014).

In parallel to stochastic simulation methods, deterministic
representations of epidemic dynamics on networks have also been
developed. In scenarios where infection is treated as spreading
from individual to individual via a network of contacts, pair
approximation methods have proved to be a valuable extension to
the classic mean-field methods. These methods have been inves-
tigated both at the population level (Matsuda et al., 1992; Keeling,
1999) and at the individual node level (Sharkey, 2008, 2011).
Insights into the relationship between microscopic stochastic
dynamics and mean-field descriptions are gained through the
analysis of these models (Sharkey, 2008).

Although most of the mean-field or pair approximation models
are based on continuous time, a few works have dealt with their
discrete-time counterpart (Wang et al., 2003; Gómez et al., 2010;
Valdano et al., 2015). On the other hand, stochastic discrete-time
epidemic models are widely used (Pastor-Satorras et al., 2015;
Frasca et al., 2006; Buscarino et al., 2008, 2014), especially in data-
driven approaches where information is available at discrete
sample times. Consequently, developing deterministic versions of
discrete-time models may offer a relevant complementary
approach. Furthermore, the dynamics of discrete-time models is
typically far richer in behavior than their analogous continuous-
time counterparts.

In previous works on deterministic discrete-time models,
Markov chains have been employed to model SI (susceptible–
infectious) or SIS (susceptible–infectious–susceptible) processes
on static contact networks (Wang et al., 2003; Gómez et al., 2010),
and then extended to deal with the case of temporal networks in
Valdano et al. (2015). However, these works investigate epidemic
processes under the assumption of stationarity and also assume
the absence of correlations between individual infection prob-
abilities. In our work, we derive the ‘discrete-time moment
equations' for the probability of the states of an SIR process. A
novel feature of these discrete-time equations is that, unlike a
standard continuous-time BBGKY-type hierarchy of moment
equations, they are expressed in terms of joint probabilities whose
degree is governed by the network structure itself via the degrees
of individual nodes. To close these equations we introduce
appropriate approximations of the joint probabilities that appear.
We do this with two different assumptions on statistical inde-
pendence: one at the level of individuals and one at the level of
pairs. We then derive models at the level of the population from
the individual-based and pair-based ones by making appropriate
homogeneity assumptions (Sharkey, 2008). We validate the
approach through numerical evaluation and compare the results
with stochastic simulation.

2. Individual-based model

We consider an undirected network G¼ ðN ;LÞ with N nodes
and L edges. Two nodes i; jAN are connected only if ði; jÞAL, and
self-loops are not allowed, that is, ði; iÞ=2L.

Each node of the network represents an individual and a link is
a contact between two individuals. In this framework, we consider
the terms ‘individuals’ and ‘nodes’ to be synonymous. The network
is also represented by its adjacency matrix G, where Gij ¼ 1 if there
is contact from individual j to individual i, and Gij ¼ 0 otherwise.

We focus on the discrete-time SIR model, where each node/
individual may assume one of the three possible states denoted as
S, I, and R. A susceptible individual may become infected if con-
tacted by an infectious individual with a probability given by Tij. In
the case where the transmission rate across each link per unit time
is the same and equal to τ, then Tij ¼ τGij. An infected individual
recovers from the disease with probability γ per unit time.

We denote the probability that the i-th individual is in the
susceptible, infectious or recovered state at time t by 〈Si〉t , 〈Ii〉t and
〈Ri〉t , respectively. Additionally, for convenience we also introduce
the uninfected state U as a state in which the agent is either sus-
ceptible or recovered, and denote the probability that the i-th
individual is in this state by 〈Ui〉t (by definition 〈Ui〉t ¼ 〈Si〉tþ 〈Ri〉t).
The discrete-time equations governing the evolution of the state
probabilities are:

〈Si〉tþ1 ¼ 〈Si〉t�ΠSi-Ii

〈Ii〉tþ1 ¼ 〈Ii〉tþΠSi-Ii �Π Ii-Ri
ð1Þ

where ΠSi-Ii represents the probability that the i-th individual in
the state S becomes infectious and Π Ii-Ri

the probability that the
i-th individual in the state I recovers from the disease.

To develop expressions for these terms, we need to introduce
the subset N iDN containing the node i and all its first neighbors,
and the subset LiDL containing all of the arcs connecting i to one
of its first neighbors. Let us assume that the cardinality of N i is m,
so in addition to i there are another m�1 elements in N i. To keep
the notation simple, let us define a new labelling of the nodes in
N i such that J1 ¼ i and the other nodes are J2; J3; J4;…; Jm. With
these definitions, the probability ΠSi-Ii reads:

ΠSi-Ii ¼ 〈SiIJ2UJ3UJ4…UJm 〉t ½1�ð1�TiJ2 Þ�
þ 〈SiUJ2 IJ3UJ4…UJm 〉t ½1�ð1�TiJ3 Þ�þ⋯
þ 〈SiUJ2UJ3UJ4…IJm 〉t ½1�ð1�TiJm Þ�
þ 〈SiIJ2 IJ3UJ4…UJm 〉t ½1�ð1�TiJ2 Þð1�TiJ3 Þ�
þ 〈SiIJ2UJ3 IJ4…UJm 〉t ½1�ð1�TiJ2 Þð1�TiJ4 Þ�þ⋯

þ 〈SiIJ2 IJ3…IJm 〉t 1� ∏
m

h ¼ 2
ð1�TiJh Þ

" #
ð2Þ

where iAf1;2;…;Ng. We note that ΠSi-Ii is a function of the
probabilities of the different possible states of the nodes of N i⧹fig
given that node i itself is susceptible. Each term on the right-hand
side of (2) expresses the joint probability of the states of m indi-
viduals multiplied by the probability that, given that state, i gets
infected over the next time step. For example, the term 〈SiIJ2UJ3…
UJm 〉t represents the probability that individual i is susceptible, J2 is
infected, and all the others are uninfected. Under this condition, i
can be infected only through contact with J2. In fact, the term ð1
�TiJ2 Þ represents the probability that i does not get infected
through the link with J2 and ½1�ð1�TiJ2 Þ� the probability that it
does. Similarly, when contacts with more than one infected indi-
viduals are possible, for instance, if 〈SiIJ2 IJ3UJ4…UJm 〉ta0, then ð1
�TiJ2 Þð1�TiJ3 Þ is the probability that i does not get infected
through the link with J2 or through the link with J3, and ½1�ð1�
TiJ2 Þð1�TiJ3 Þ� is the probability that it does.

By contrast the recovery probability Π Ii-Ri
does not depend on

the state of the neighbors, and is expressed by:

Π Ii-Ri
¼ γ〈Ii〉t : ð3Þ

Eq. (1) is exact, but not closed. We propose to close it either at
the level of individuals or at the level of pairs. The first case is dealt
with in this section, while the second one is discussed in Section 3.
In the first case, we assume statistical independence at the level of
the individual probabilities; that is, we approximate the m-node
state (or m-state) probability as:

〈AiBJ2CJ3DJ4…MJm 〉� 〈Ai〉〈BJ2 〉〈CJ3 〉〈DJ4 〉…〈MJm 〉 ð4Þ
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