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H I G H L I G H T S

� I reQ5 view a number of recent results
from synergistic games on evolu-
tionary graphs.

� In general, higher-order coefficients
of relatedness are needed for the
inclusive fitness effect.

� However when genetic variance is
maintained by rare mutation, stan-
dard (linear) coefficients will suffice.

� In this case, a synergistic game has
an equivalent additive game.
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a b s t r a c t

Much Q3debate has app Q4eared in the literature over the generality of the inclusive fitness approach in the
modeling of evolutionary behavior. Here I focus on the capacity of the inclusive fitness approach to
effectively handle non-additive or synergistic interactions. I work with a binary interaction with the

matrix game
a b

c d

� �
and I restrict attention to transitive (homogeneous) populations with weak

selective effects. First of all I observe that the construction of “higher-order” relatedness coefficients
permits these synergistic interactions to be analyzed with an inclusive fitness analysis. These coefficients
are an immediate generalization of Hamilton's original coefficient and can be calculated with exactly the
same type of recursive equations. Secondly I observe that for models in which the population is not too
large and local genetic renewal is rare (e,g, rare mutation), these higher order coefficients are not needed
even with non-additive interactions; in fact the synergistic interaction is entirely equivalent to a closely-
related additive one. The overall conclusion is that in the study of synergistic binary social interactions
(2-player games) in a finite homogeneous population with weak selection and rare genetic renewal, a
standard inclusive-fitness analysis is able to predict the direction of allele-frequency change. I apply this
result to analyze a recent model of Allen and Nowak (2015).

& 2016 Published by Elsevier Ltd.

1. Introduction

The study of the evolution of social behavior has been hugely
enriched by Hamilton's (1964) construction of inclusive fitness and
the wealth of literature which has developed and extended its
ideas over the past half century. Much recent controversy (Nowak
et al., 2010; Abbot et al., 2011; Bourke, 2011; Herre and Wcislo,

2011; Nowak et al., 2011; Allen et al., 2013; Liao et al., 2015;
Queller et al., 2015) has arisen over the significance and centrality
of the inclusive-fitness approach. The resulting debate, which
typically identifies apparent misunderstandings, has certainly led
to a clarification and sharpening of our understanding of the
inclusive fitness method. One of the most significant issues in this
debate concerns the capacity of the inclusive-fitness approach to
handle non-additive or “synergistic” fitness effects and this ques-
tion is close to my own recent interests. I believe that a synergistic
inclusive fitness theory is now firmly in place and that has
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prompted me to reply to a recent paper of Allen and Nowak (2015)
where it is asserted that “inclusive fitness can only be formulated
if each individual's genotype contributes a separate, well-defined
amount to each other individual's fitness.” In my response below I
first observe that a natural generalization of the standard notion of
relatedness can give us an inclusive-fitness analysis of non-linear
(quadratic) fitness effects. Secondly I point out that there are some
quite standard population models for which the classical “addi-
tive” inclusive-fitness analysis is already able to handle synergistic
fitness effects. Those are the ones in which the process through
which new genetic material enters a neighborhood, for example,
mutation,is rare.

At the core of an inclusive-fitness analysis is the inclusive-
fitness effect

WIF ¼
X

k
aikRi�k ð1:1Þ

of a single focal actor i whose behavior generates a fitness change
aik in a number of recipients k (Hamilton, 1964). Here WIF is a linear
combination of the effects aik each weighted by the focal related-
ness Ri�k to the individual k, this being a measure of the extent of
common genetic ancestry between i and k (Michod and Hamilton,
1980). It has been shown many times in different ways (Hamilton,
1964; Charlesworth, 1980; Queller, 1992a; Taylor 1996, and many
more recent papers cited below) that under a suite of simple
assumptions, particularly weak selection and additive gene action,
the sign ofWIF will tell us whether the selective effects of the action
of an allele will cause its frequency to increase or decrease.

To be more precise about the assumption of additivity, it
requires that the fitness effect aik of the action of i on individual k
depends only on the genotype of i and is independent of all other
genotypes, particularly that of k. This is, I believe, the condition
that Allen and Nowak (2015) had in mind with the stipulation that
“each individual's genotype contributes a separate, well-defined
amount to each other individual's fitness.”

An enormous body of work generated over the past 50 years
has produced many versions and extensions of the fundamental
Eq. (1.1). Much of the recent work in social evolution looks at
binary matrix games in which the selective effects of the behavior
are directly coded by genetic alleles, and in that domain it appears
to be the case that a linear combination of fitness effects such as is
found in Eq. (1.1) will do the job only under particular “additive”
conditions, often referred to as “equal gains from switching.”
Queller (1985, 1992b) was the first to discuss these non-additive or
“synergistic” effects and he observed that they would require an
extension of the standard approach.

One such extension is based on the use of a multilinear regres-
sion analysis (Queller, 1992a, 1992b; Gardner et al., 2011). This
approach retains the mathematical form of the inclusive fitness
effect (1.1) but the fitness effects aik are no longer constructed
mechanistically directly from the entries of the payoff matrix (e.g.
by following the effects of a fecundity benefit through the pattern of
offspring dispersal), rather they are replaced by more general
coefficients of linear regression. Effectively this approach is says
that for the purpose of measuring allele frequency change, the
fitness-determining interactions behave as if they combine addi-
tively. However in forming this linear combination, the biologically
meaningful parameters such as the entries of the payoff matrix and
offspring dispersal probabilities are often replaced by more abstract
entities and one loses the direct intuition of the formulation.

Here I will work with another type of extension, one that
preserves the meaning of the fitness effects aik, but extends the
summation found in (1.1) to incorporate quadratic fitness effects
aijk and corresponding relatedness coefficients Rij�k. In this
extension, individuals i and j are in a sense joint actors in that the
fitness effect aijk on k depends not simply on the genotype of the

focal actor i, but on the product xixjof the genotypes of i and j, and
the coefficients of relatedness Rij�k depend on the various prob-
abilities of genetic identity among all three individuals.

Finally and unexpectedly, I will observe that in the case in
which local genetic renewal (mutation or migration) is rare, and
the population size is not too large, these generalized relatedness
coefficients Rij�k are not actually needed; rather the quadratic
synergistic effects referred to above can be handled with the
standard coefficients Ri�k. To be more explicit, I will show (Eq.
(2.6) below) that in this case, the inclusive-fitness effect can be
given an “additive” formulation in which every individual's gen-
otype does indeed contribute a separate, well-defined amount to
each other individual's fitness. In the Appendix I provide a simple
worked example of this. I end with an inclusive fitness analysis of
the two examples discussed by Allen and Nowak (2015).

2. Inclusive fitness with pairwise interactions

2.1. Population structure

I begin with a finite population represented as an evolutionary
graph, a set of nodes, indexed by i and j, etc., each occupied by a
single asexual haploid breeder. The structure of the population is a
specification of fitness interactions among the nodes as well as
node succession, the probability that in each time step, breeder i is
replaced by breeder j or by its offspring. An evolutionary graph has
a homogeneous or transitive structure (Taylor et al., 2007b) if for any
given pair i, j of nodes there is an isomorphism of the node set
mapping i to j, that is, a bijection which preserves all components of
the structure: interaction and node replacement. Roughly speaking,
the structure “looks the same” from every node, that is, if an
inhabitant of any node was blindfolded and removed and then put
back on a node at random, it would be unable to tell whether it had
been moved. When transitivity fails, the orbits of the set of all
isomorphisms partition the node set into reproductive classes and
individuals in different classes might have different reproductive
values which typically need to be accounted for. To keep the ana-
lysis simple I will assume the population has a transitive structure.

There are many ways to model birth and death and here I allow
either a Moran process in which in any time-step there is a single
birth and death, or a Wright-Fisher process in which generations
are non-overlapping and in each time-step all individuals bear
offspring and die and the offspring repopulate the nodes.

I suppose that there are two alternative alleles A and B in the
population determining behavior and I let the genotypic value xi of
the breeder on node i be the frequency of A in its genotype. To
maintain local genetic variability, we need a source of new genetic
material and I assume that this comes through “long-range”
migration or mutation or both.

2.2. Matrix games

In each generation an individual has a number of pairwise

interactions, each playing the game with payoff matrix
a b
c d

� �
(Maynard Smith, 1982; Queller, 1985; Nowak and May, 1992;
Nowak et al., 2004) where the first row gives the payoffs to an A-
player (with an A or B partner) and the second row belongs
similarly to B. I assume that the payoffs represent small incre-
ments in fitness, small enough that we can ignore second-order
effects. For each offspring, the average payoff is added to the
baseline fitness of 1. Here we take individual fitness to measure
genetic contribution to the next generation.

In inclusive-fitness studies, a normalized version of the matrix
is often used. If we subtract d from each entry so that the payoff
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