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H I G H L I G H T S

� A efficient approach for simulating biochemical reaction systems is provided.
� SDEs with reflection were employed to model the biochemical reaction systems.
� The domain where the species numbers should lie in is obtained.
� The projection in the numerical methods is actually a convex programming problem.
� The approach allows for incorporation in complex biological models in a tractable way.
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a b s t r a c t

In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by
stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The
model is computationally efficient compared with the discrete-state Markov chain approach, and it
ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically,
our model mathematically ensures that species numbers lie in the domain D, which is a physical con-
straint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained
according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is
inherent in the biochemical reaction system. A variant of projection method was employed to solve the
reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler–Maruyama
method was applied to the equations first, and then check whether or not the point lies within the
domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D
is the solution to a convex quadratic programming problem. Thus, existing methods for the convex
quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on
several important problems in biological systems confirmed the efficiency and accuracy of this approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cells are intrinsically noisy biochemical reactors in which low
reactant concentrations can lead to significant statistical fluctua-
tions in molecule numbers and reaction rates. Most biological
reactions occurring in a cell are inherently stochastic. Modeling
and analysis of biochemical kinetics are important since they can

provide insights into complicated systems where traditional
experimentation is costly or difficult. Simulation is a powerful
analysis technique, and in particular, stochastic simulation of
biochemical systems has received increasing attention recently
(Gillespie, 1977; Li, 2007; Székely et al., 2014; Niu et al., 2014;
Székely, 2014).

The Chemical master equation (CME) takes a ‘distribution’ view
of the biochemical reaction system, keeping track of every possible
state. It describes the probabilities of the system being in each
state at different time points. Therefore, the CME seems to be the
ideal way of finding the evolution in time of a stochastic system,
i.e., it is exact and returns the full probability density function
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(PDF) of the system. However, only in the case of very simple
systems can the CME be solved analytically. In other words, for
most cases, a numerical method is needed. Hence, solutions of the
CME are generally not actually exact in practice. In addition, each
solution is very computationally-intensive since each possible
state has to be evaluated at each time point and the number of
states can grow exponentially. Thus the CME approach could only
be effectively used to simulate small-scale or simple systems for
short periods of time initially. There has been considerable pro-
gress on CME solver methods in recent years (for example,
Munsky and Khammash, 2006; MacNamara et al., 2008; MacNa-
mara and Burrage, 2010). However, when populations and pro-
pensities grow too large to be calculated using the CME, trajectory-
based simulations must be used instead.

The basic trajectory-based approach that exactly simulates
individual paths from the full distribution given by the CME is the
stochastic simulation algorithm (SSA) (Gillespie, 1977). We call it
the discrete-state Markov chain approach. The SSA is a statistically
exact method for generating Monte Carlo paths. A PDF built up
from an infinite number of simulations of the SSA will be identical
to the true distribution of the system, as given by the CME.
Obviously this limit requiring infinite simulations cannot be
reached, however a satisfactorily accurate PDF can be achieved by
a moderately high number of repeats of the SSA. Although in
recent years there has been considerable progress on Gillespie-
type methods (Yates and Klingbeil, 2013; Anderson et al., 2014),
these algorithms often become computationally expensive as
increasingly complex physical systems are modelled, especially
when there are wide ranges of rate constants and numbers of
molecules.

The SDE model poses as an attractive alternative to the
discrete-state Markov chain approach for studying the effects of
stochastic behavior on the dynamics of excitable cells and tissues,
due to the appreciable computational speed up achieved. How-
ever, solutions to the SDE model can become negative or even
imaginary, and so have no physical meaning in such cases (e.g., the
number of a molecule may become negative, violating its physical
constraint). The SDE model breaks down in such cases. In the
numerical algorithm, it is common to set the approximation to
0 when it becomes negative or resample the Wiener increment
until the numerical solution is positive. We adopt the former
approach in Section 3 when modelling biochemical reaction sys-
tems by SDE to avoid breaking down, and call it the modified SDE
approach. But these alterations can bring in bias into the numer-
ical solution as shown in Section 3. The authors (Wilkie and Wong,
2008) explored a way of modifying the noise term of the chemical
Langevin equations (CLE) such that the variables preserve posi-
tivity. They allowed stochasticity only for those reaction steps in
which a species participates. But the modified positivity preser-
ving CLE system obtained in Wilkie and Wong (2008) after drop-
ping the product noise terms does not guarantee the co-variance
matrix matching condition and is thus physically inconsistent. The
authors (Dana and Raha, 2011) studied a non-negativity preser-
ving Milstein method implicit in both drift and diffusion terms.
The scheme imposed the non-negativity constrained in the New-
ton iterations. Additionally, the scheme always satisfies the co-
variance matrix matching condition and is thus physically con-
sistent. But the computational cost can be extremely expensive
since a fully implicit method requires extra computation such as
the Newton iteration at each time step. The authors (Schnoerr
et al., 2014) show that, by extending the domain of the CLE to
complex space, the CLE's accuracy for unimolecular systems is
restored. It is shown that the complex CLE predicts real-valued
quantities for the mean concentrations. But the molecule numbers
are generally complex and are biologically unrealistic.

In this paper we address the issue of ensuring biologically
plausible solutions to the SDE model without potentially biasing
the solution compared with the modified SDE approach by
incorporating boundaries into the SDE. The resulting model is
called a SDE with reflection or reflected SDE and has previously
been used to model human metabolic processes (Kawamura and
Saisho, 2006), ion channel dynamics (Dangerfield et al., 2012;
Dangerfield, 2012), and so on. The authors (Riley et al., 2008)
developed a method for simulating Stochastic Hybrid Systems
(SHS) with switching and reflecting boundaries. They pointed out
that all biochemical systems cannot contain negative concentra-
tions, and some biochemical processes also have saturation limits
which impose upper limits on concentrations. This method
enforces positivity of the molecule numbers by rejecting moves of
the CLE algorithm which reduce the molecule numbers below
zero. In addition, the modification may affect the accuracy of the
CLE as an approximate method to probe stochastic chemical
systems.

The field of SDE with boundary-condition model for biochem-
ical reaction systems is much less well developed than for ordinary
SDE model. SDE with reflection seems to be a good candidate for
this problem. However, it is difficult to be carried out both ana-
lytically and numerically. A number of researches worked on it in a
heuristic way, see for example (Riley et al., 2008). In this paper, we
modelled the biochemical reaction systems by the reflected SDEs
in a mathematical way. We gave a more accurate domain where
the species numbers should lie in according to the structure of the
CLE. Numerical approaches are used to solve the SDEs with
reflection. Generally, they can be broadly split into two categories,
i.e., penalization methods and projection methods. A variant of
projection method was employed in this paper since numerical
solutions of penalization methods can leave the domain, even if
the exact solution to the reflected SDE does not. The only new
feature of the projection method compared with the standard
numerical methods for SDEs is the projection onto a convex
polyhedron, that is usually easy to carry out. It is found that this
projection is by chance a convex quadratic programming problem
in the present work. General classes of methods that can be used
to solve convex quadratic programming problems can also be used
to find the projection. The outline of this paper is as follows. First,
we propose our new model for biochemical reaction systems and
determine the biochemical realistic region D. Then we introduce a
simple numerical scheme to solve the reflected SDE model, and
the new algorithm can actually be straightforward to be imple-
mented. Finally, numerical results on several important biological
problems confirm the effectiveness of our method.

2. The reflected SDE model for biochemical reaction systems

2.1. The biochemical reaction systems and the Langevin equation

Assume that there is a well-stirred biochemical reaction system
containing N molecular species S1; S2;…; SN . These species of
molecules chemically interact through M reaction channels at a
constant temperature inside a fixed volumeΩ. Let xi(t)(i¼ 1;…;N)
denote the number of Si at time t. Then the dynamic state of this
system is X ¼ ðx1ðtÞ; x2ðtÞ;…; xNðtÞÞT . Assume the initial state is
Xðt0Þ ¼ X0. Define the propensity functions ajðXðtÞÞðj¼ 1;…;MÞ
such that ajðXðtÞÞ dt are the probability that one reaction Rj will
occur inside Ω in the next infinitesimal time interval ½t; tþdtÞ
given XðtÞ ¼ X. aðXÞ ¼ ða1ðXÞ; a2ðXÞ;…; aMðXÞÞ. A state change vector
vj is defined to characterize reaction Rj. The N �M matrix v is
called the stoichiometric matrix. Its element vij represents the
change in the number of species Si due to reaction Rj.
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