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H I G H L I G H T S

� The role of underdominance in population connectivity is discussed.
� A simple model incorporating migration and underdominance in a meta-population with varying network topologies is presented.
� Simulations of underdominance with migration suggest the network topology of a meta-population is important to long term genetic stability.
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a b s t r a c t

Heterozygote disadvantage is potentially a potent driver of population genetic divergence. Also referred
to as underdominance, this phenomena describes a situation where a genetic heterozygote has a lower
overall fitness than either homozygote. Attention so far has mostly been given to underdominance within
a single population and the maintenance of genetic differences between two populations exchanging
migrants. Here we explore the dynamics of an underdominant system in a network of multiple discrete,
yet interconnected, populations. Stability of genetic differences in response to increases in migration in
various topological networks is assessed. The network topology can have a dominant and occasionally
non-intuitive influence on the genetic stability of the system.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Variation in the fitness of genotypes resulting from combina-
tions of two alleles (e.g., A- and B-type alleles combined into AA-,
AB-, or BB-genotypes resulting in wAA, wAB, and wBB fitnesses
respectively) result in different evolutionary dynamics. The case in
which a heterozygote has a lower fitness than either homozygote,
wABowAA and wABowBB, is termed underdominance or hetero-
zygote disadvantage. In this case there is an internal unstable
equilibrium so that the fixation or loss of an allele depends on its
starting frequency. In a single population, stable polymorphism is
not possible. However, when certain conditions are met, popula-
tions that are coupled by migration (the exchange of some fraction
of alleles each generation) can result in a stable selection-
migration equilibrium. This selection-migration equilibrium is
associated with a critical migration rate (mn); above this point the
mixing between populations is sufficiently high for the system to

behave as a single population and all internal stability is lost
(Altrock et al., 2010).

Underdominance can be thought of as an evolutionary bistable
switch. From the perspective of game-theory dynamics it can be
interpreted as a coordination game (Traulsen and Reed, 2012). The
properties of underdominance in single and multiple populations
have led to proposals of a role of underdominance in producing
barriers to gene flow during speciation (Faria and Navarro, 2010;
Harewood et al., 2010) as well as proposals to utilize under-
dominace both to transform the properties of wild populations in
genetic pest management applications (Curtis, 1968; Davis et al.,
2001; Sinkins and Gould, 2006; Reeves et al., 2014) and to engi-
neer barriers to gene flow (transgene mitigation) from genetically
modified crops to unmodified relatives (Soboleva et al., 2003;
Reeves and Reed, 2014).

The properties of underdominance in a single population are
well understood (Fisher, 1922; Haldane, 1927; Wright, 1931) and
the two-population case has been studied in some detail (Karlin
and McGregor, 1972a, 1972b; Lande, 1985; Wilson and Turelli,
1986; Spirito et al., 1991; Altrock et al., 2010, 2011), with fewer
analytic treatments of three or more populations (Karlin and
McGregor, 1972a, 1972b). Simulation-based studies have been
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conducted for populations connected in a symmetrical one- and
two-dimensional lattice (Schierup and Christiansen, 1996; Payne
et al., 2007; Eppstein et al., 2009; Landguth et al., 2015) (see also
Kondrashov, 2003; Hoelzer et al., 2008; Barton and De Cara, 2009
for extensions to multiple loci) and “wave” approximations have
been used to study the flow of underdominant alleles under
conditions of isolation by distance (Fisher, 1937; May et al., 1975;
Barton and Rouhani, 1991; Piálek and Barton, 1997; Soboleva et al.,
2003; Barton and Turelli, 2011). However, despite this body of
literature, underdominance remains relatively neglected in popu-
lation genetic research (Bengtsson and Bodmer, 1976). Models in
which allele frequencies are distributed in continuous populations
are easier to analyse, and are appropriate approximations when
selection is weak and the number of discrete demes is large
(Barton, 1979). However, here we are interested in the cases where
the number of demes is small or selection is strong (as is the case
in potential applications of underdominace) or demes are con-
nected in more complex topologies (e.g., asymmetrical arrays).
This is where the continuous approximation breaks down and
many of the effects we see in the context of small network
topology have been previously overlooked. Furthermore, a large
focus of earlier theoretical work with underdominance was on
how new rare mutations resulting in underdominance might
become established in a population (Wright, 1941; Bengtsson and
Bodmer, 1976; Hedrick, 1981; Walsh, 1982; Hedrick and Levin,
1984; Lande, 1984, 1985; Barton and Rouhani, 1991; Spirito, 1992).
However, here we are addressing the properties of how under-
dominant polymorphisms may persist once established within a
set of populations rather than how they were established in the
first place.

We explicitly focus on discrete populations that are connected
by migration in a population network. We have found that the
topology of the network has a profound influence on the stability
of underdominant polymorphisms aspects of which have been
otherwise overlooked. This influence is not always intuitive a
priori. These results have implications for the effects of network
topology on a dynamic system (see for review Strogatz, 2001),
particularly for interactions related to the coordination game (such
as the stag hunt, Skyrms, 2001), theories of speciation, the main-
tenance of biological diversity, and applications of under-
dominance to both protect wild populations from genetic mod-
ification or to genetically engineer the properties of wild popula-
tions—depending on the goals of the application.

2. Methods and results

We are considering simple graphs in the sense of graph theory
to represent the population network: each pair of nodes can be
connected by at most a single undirected edge. A graph G¼ N ; Eð Þ,
is constructed from a set of nodes, N (also referred to a vetexes),
and a set of edges, E, that connect pairs of nodes. For convenience
V ¼ jN j and E¼ jE j , we chose V (for vertex) to represent the
number of nodes to avoid future conflict with N symbolizing finite
population size in population genetics. A node corresponds to a
population made up of a large number of random-mating (well
mixed) individuals (a Wright–Fisher population, (Fisher, 1922;
Wright, 1931) with independent Hardy–Weinberg allelic associa-
tions, (Hardy, 1908) and the edges represent corridors of restricted
migration between the populations. We are also only considering
undirected graphs: in the present context this represents equal
bidirectional migration between the population nodes. Further-
more, we are only considering connected graphs (each node can
ultimately be visited from every other node) and unlabeled graphs
so that isomorphic graphs are considered equivalent.

The network graph G is represented by a symmetric V � V
adjacency matrix A.

A¼

a1;1 a1;2 a1;3 ⋯ a1;V
a2;1 a2;2 a2;3 ⋯ a2;V
a3;1 a3;2 a3;3 ⋯ a2;V
⋮ ⋮ ⋮ ⋱ ⋮

aV ;1 aV ;2 aV ;3 ... aV ;V

2
6666664

3
7777775

The presence of an edge between two nodes is represented by a
one and the absence of an edge is a zero. The connectivity of a
node is

ci ¼
X
jAN

ai;j

Each generation, g, the allele frequency, p of each population
node, i, is updated with the fraction of immigrants from n adjacent
populations, j, at a migration rate of m.

pi;g ¼ ð1�cimÞpi;g�1þ
XN

j ¼ 1

mai;jpj;g�1

Note that this equation will not be appropriate if the fraction of
alleles introduced into a population exceeded unity. See the dis-
cussion of the star topologies illustrated in Fig. 1 and the Supple-
mental Methods for discussion of an alternative approach.

The frequencies, adjusted for migration, are then paired into
genotypes and undergo the effects of selection. The remaining
allelic transmission sum is normalized by the total transmission of
all alleles to the next generation to render an allele frequency from
zero to one.

p0i;g ¼
p2i;gþωpi;gð1�pi;gÞ

p2i;gþ2ωpi;gð1�pi;gÞþð1�pi;gÞ2

Note that here for simplicity we set the relative fitness of the
homozygotes to one, wAA ¼wBB ¼ 1 and the heterozygote fitness is
represented by wAB ¼ω.

2.1. Analytic results

Underdominance in a single population has one central
unstable equilibrium and two trivial stable equilibria at p¼0 and
p¼1. When one considers multiplying the three fixed points of a

Fig. 1. The stability of some simple network configurations. For each number of
nodes and network topology (linear in blue, cyclic in red, star-like in yellow, and
fully interconnected in green) the critical migration rate allowing polymorphic
underdominant polymorphism to persist at ω¼ 1=2 is plotted. Examples of each
type of network at V¼5 are plotted as graphs in the legend to the right. The
shading of the nodes represents the allele frequency between zero and one of each
population near the critical migration rate value. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)
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