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H I G H L I G H T S

� Fluid flow in symmetric and asymmetric tree-shaped flow networks is studied.
� Flows of Newtonian and non-Newtonian are studied.
� Scaling laws for optimal sizes of symmetric bifurcations are proposed.
� Scaling laws for optimal sizes of asymmetric bifurcations are proposed.
� Hess–Murray's law is justified and extended.
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a b s t r a c t

Fluid flow in tree-shaped networks plays an important role in both natural and engineered systems. This
paper focuses on laminar flows of Newtonian and non-Newtonian power law fluids in symmetric and
asymmetric bifurcating trees. Based on the constructal law, we predict the tree-shaped architecture that
provides greater access to the flow subjected to the total network volume constraint. The relationships
between the sizes of parent and daughter tubes are presented both for symmetric and asymmetric
branching tubes. We also approach the wall-shear stresses and the flow resistance in terms of first tube
size, degree of asymmetry between daughter branches, and rheological behavior of the fluid. The
influence of tubes obstructing the fluid flow is also accounted for. The predictions obtained by our
theory-driven approach find clear support in the findings of previous experimental studies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of generation of flow configuration is ubi-
quitously in animate and inanimate systems, both in small and
large scale systems (Pries et al, 1995; Bejan, 2000; Losa et al., 2002;
Lorente and Bejan and, 2008; Lorthois and Cassot, 2010; Flores
et al. 2013; Razavi et al., 2014; Lorenzini et al., 2014; Miguel, 2006,
2013a; Schwen et al. 2015). Tree-shaped flow networks are com-
monplace in fluid dynamics systems and a topic of much current
interest in many fields of science and technology (Pries et al, 1995;
Bejan, 2000; Losa et al., 2002; Bejan and Lorente, 2008; Miguel,
2013b).

These networks are used for distribution and collection of fluid
with the aim of providing an easier access to the currents that flow

through it. Therefore, they should conform to a number of design
principles to operate efficiently (Pries et al, 1995; Bejan, 2000).

A dichotomous branching of tubes typifies these networks: a
parent tube divides into two daughter tubes, and the branching
defines the beginning of a new generation. Another distinctive
feature of these networks is their hierarchical geometry, i.e., as the
tree network progresses, the vessels become narrower. Hess (1914)
and Murray (1926) arrived to the conclusion that the diameters of
the parent-daughter tubes obey a third-power rule. The relation-
ship referred to as Hess–Murray's law, states that the cube of the
diameter of the parent tube equals the sum of the cubes of the
diameters of the daughter tubes. This relationship was first
obtained based on minimization of a cost function expressed by
the sum of dissipative work done by viscous forces in the fluid
flow and the energy required to maintain the vascular volume
(Murray, 1926).
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The constructal law is about the origin of the generation of
geometric form in flow systems (Bejan, 2000; Bejan and Lorente,
2008, 2013; Miguel, 2006, 2013a). According to this law, shape
does not develop by chance and a system such as area/volume-to-
point flows (or vice-versa) evolves in such a way that its archi-
tecture is the one that provides easier flow access under the given
constraints. Bejan et al. (2000) relied on the constructal law to
derive a relationship between the length of the parent tube and
the optimal lengths of the daughter tubes in a branching network.
They concluded that the lengths of the daughter tubes should also
obey to a third-power rule similar to Hess–Murray law. This result
is obtained based on the assumption that the flow through the
branching network is described by the Hagen–Poiseuille law.

Many other basic features of tree network design are explained
and put on a unifying theoretical basis provided by the constructal
law. Work carried out by Bejan and co-authors, derived the rela-
tionships that exist between the sizes of parent and daughter
tubes under turbulent flow and also highlighted the importance of
scaling principles in the design of natural and artificial vasculature
(Lorente and Bejan, 2009; Zhang et al., 2009; Lee et al., 2009;
Cetkin et al., 2012; Razavi et al., 2014).

Shear stress from fluid flow has a fundamental role in long-
term maintenance of the structure and function of blood vessels
(Rodbard, 1975; Lu and Kassab, 2011). A direct consequence of the
Hess–Murray law is that wall shear stress should be the same for
parent and daughter tubes. However, not uniform shear stresses
have been observed in throughout the vascular system (Kamiya et
al., 1984; Pries et al., 1995). Blood vessels react chronically to the
mechanical forces exerted by the flowing blood (Pries et al., 1995,
2003). Long-term effects of increased blood flow on peripheral
resistance, and structural adaptation of microvascular networks in
response to changes in blood flow are important issues to be
analyzed. An extensive experimental study on geometrical and
mechanical data in the mesenteric vasculature of anesthetized rats
was conducted by Pries et al. (1995, 2001). A model that is able to
reproduce experimentally observed structural changes in the
mesenteric circulation of hypertensive rats was also presented
(Pries et al., 2005).

The vast majority of studies examining tree flow networks use
Newtonian fluids. However, there is the recognition that body
fluids (e.g., blood) and fluids used in industrial applications often
exhibit non-Newtonian (non-linear) behavior (Schreiner et al,
1997; Chhabra and Richardson, 1999; Baieth, 2008; Dong et al.,
2013). Non-Newtonian rheology has a significant impact on flows
in narrow-diameter tubes. A class of non-Newtonian fluids can be
defined via the following rheological law, τ¼Mγω, which relates
the shear stress in the fluid τ to a certain power of the shear strain
rate γ. The power-law exponent ω is called fluid behavior index
and M is the consistency index. When ω¼1, the equation becomes
the constitutive equation of Newtonian fluid. For ωo1 the fluid
exhibits shear-thinning properties. For a shear-thickening fluid,
the index ω will be greater than unity.

Revellin et al. (2009) presented an extension of Murray's law
for a non-Newtonian blood flow model assuming pumping power,
volume and surface constraints. They also concluded that entropy
generation between the parent and daughter vessels is smaller for
a non-Newtonian fluid than for a Newtonian fluid.

Most branching flow studies available in the literature assume
a symmetric or quasi-symmetric branching (Schreiner et al., 1996;
Schreiner et al., 1997; Kaimovitz et al, 2008; Bejan and Lorente,
2008; Miguel, 2013b, 2015; Kasimova et al., 2014). Asymmetry
means daughter branches with different sizes. Binary flow trees in
which the daughter tubes, at the same level of branching, have
different sizes, have been observed in various natural flow systems
across the biological and non-biological systems (Schreiner et al.,
1996; Kaimovitz et al., 2008).

Tree flow networks of small tubes, such as that of the capillary
network of blood vessels and the bronchial respiratory tree, may
present significantly asymmetrical branching patterns (Horsfield
et al., 1971; Phillips and Kaye, 1995; Schreiner et al., 1997; Saka-
guchi, 2014). Asymmetry means also unequal distribution of fluid
flow within the daughter tubes, which consequently affects the
transport processes within them. So, the knowledge of how the
asymmetric branching affects the flow resistance locally and, in
the entire network is very important.

In this paper, we address the problem of forcing a power-law
fluid through binary symmetric and asymmetric structured tree
networks. The hydrodynamic performance of these structures is
studied and the relationship between the sizes of the tubes in the
bifurcation is examined. The effect of the degree of asymmetry
over each bifurcation and on overall performance of the tree
network is also investigated.

2. Theory

2.1. Best size of a system composed by a tube that feeds into two
daughter tubes for easier flow access

Tree-shaped flow networks are complex branched distribution
system. This branching is essentially dichotomous (Fig. 1) and is
repeated for a number of generations. According to Eq. (A4) in the
Appendix, the flow resistance, Rh, of an individual tube is

Rh ¼
Δp
Qω ¼ 4M 8 1

ωþ3
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L

πωD3ωþ1 ð1Þ

where Q is the volumetric flow rate, ω is the fluid behavior index,
M is the fluid consistency index, and D and L are the diameter and
the length of the tube, respectively.

For a binary tree, pursuing the analogy with electricity, the total
flow resistance of the branching tubes (Fig. 2) is
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Fig. 1. Dichotomous tree flow network.
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