
A biophysical model of cell evolution after cytotoxic treatments:
Damage, repair and cell response

M. Tomezak a,b, C. Abbadie b,d, E. Lartigau c, F. Cleri a,d,n

a Institut d'Electronique Microelectronique et Nanotechnologie (IEMN), UMR Cnrs 8520, 59652 Villeneuve d'Ascq, France
b CNRS, Institut Pasteur de Lille, UMR Cnrs 8161 Mechanisms of Tumorigenesis and Targeted Therapies, 59000 Lille, France
c Centre de Lutte contre le Cancer “Oscar Lambret”, 59000 Lille, France
d Université de Lille I, Sciences et Technologies, 59650 Villeneuve d'Ascq, France

H I G H L I G H T S

� Agent-based model of cell population damage by radio- and chemotherapy.
� Includes cell damage, repair, healthy and tumoral cells, chemical diffusion, cell motility, and more.
� Simulation of experimental cell survival curves and of bystander effect in radiotherapy.
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a b s t r a c t

We present a theoretical agent-based model of cell evolution under the action of cytotoxic treatments,
such as radiotherapy or chemotherapy. The major features of cell cycle and proliferation, cell damage and
repair, and chemical diffusion are included. Cell evolution is based on a discrete Markov chain, with cells
stepping along a sequence of discrete internal states from ‘normal’ to ‘inactive’. Probabilistic laws are
introduced for each type of event a cell can undergo during its life: duplication, arrest, senescence,
damage, reparation, or death. We adjust the model parameters on a series of cell irradiation experiments,
carried out in a clinical LINAC, in which the damage and repair kinetics of single- and double-strand
breaks are followed. Two showcase applications of the model are then presented. In the first one, we
reconstruct the cell survival curves from a number of published low- and high-dose irradiation experi-
ments. We reobtain a very good description of the data without assuming the well-known linear-
quadratic model, but instead including a variable DSB repair probability. The repair capability of the
model spontaneously saturates to an exponential decay at increasingly high doses. As a second test, we
attempt to simulate the two extreme possibilities of the so-called ‘bystander’ effect in radiotherapy: the
‘local’ effect versus a ‘global’ effect, respectively activated by the short-range or long-range diffusion of
some factor, presumably secreted by the irradiated cells. Even with an oversimplified simulation, we
could demonstrate a sizeable difference in the proliferation rate of non-irradiated cells, the proliferation
acceleration being much larger for the global than the local effect, for relatively small fractions of irra-
diated cells in the colony.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of cancer in a living organism follows com-
plex paths, not without seemingly contradictory features. From the
broad point of view of systems theory, the emergence of cancer
cells may be seen as a stochastic process, in which a few cells, or

even just one, change their nature without a traceable cause-effect
mechanism, and start proliferating abnormally. On the other hand,
the rapid and uncontrolled development of tumoral tissues is
unlikely to be described as a purely stochastic phenomenon, and
metastatic propagation is drastically distinct from a simple
diffusion-like flow: these features rather have the character of self-
organising, non-equilibrium dynamical systems, susceptible of
taking on a chaotic or avalanche pattern under the effect of a small
perturbation (see, e.g., Hart et al., 2015; Greaves, 2015) ).

Introducing such a language from theoretical physics in the
domain of cancer may seem unusual. However, physical-
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mathematical models have already accumulated a considerable
tradition in cancer studies. Early analytical models based on cou-
pled partial differential equations (see, e.g., Brunton and Wheldon,
1980; Sachs et al., 2001) have been accompanied in recent years,
and often superseded by complex numerical simulations models
(Edelman et al., 2010; Deisboeck et al., 2011; Lowengrub et al.,
2010; Tracqui, 2009), which attempt at following the space- and
time-dependent dynamics of cancer growth, by adding an
increasing wealth of details and phenomenological correlations
coming from biochemical and clinical studies.

Despite the considerable efforts in modelling, cancer treat-
ments are still relying on a substantially empirical knowledge.
Radiotherapy employs ionising radiation to eradicate cancer cells,
mainly through the generation of DNA double-strand breaks
(DSB), although the detailed mechanisms by which DSB and other
sub-cellular lesions are generated are still quite far from clear.
Empirical descriptions, such as the so-called linear-quadratic
model (Dale, 1985) are still extensively used in radiotherapy, to
describe cell damage upon the delivery of ionising radiation,
together with extensions, such as the ‘Tumor Control Probability’
model (Kutcher, 1996), aimed at predicting the clinical efficacy of
radiotherapeutic protocols. However, a detailed correlation
between the radiation dose and its microscopic outcomes, both at
the cell and tissue level, is still missing.

In this work we develop, implement, calibrate, and apply a
discrete-cell model with internal degrees of freedom, capable of
describing both normal and cancer cell evolution, and accounting
for localised damage and repair mechanisms, with the aim of

studying the long-term evolution of a cell population subject to
cytotoxic therapeutic treatments. Our main interest and applica-
tion concerns the immediate and delayed action of radiotherapy
treatments. However, the formalism developed here is enough
general to be easily applicable to other cytotoxic agents, such as
chemotherapy, oxidative poisoning, environmental (UV) radiation
damage.

The virtual cell population is represented by a large assembly
(up to several millions) of individual stochastic agents (see, e.g.,
Byrne and Drasdo, 2009; Wang et al., 2015; Cilfone et al., 2015),
endowed with a number of probabilistic properties (phenotypes),
which allow us to follow the evolution of individual cells through
their daily cycle over very long time scales (days, months, up to
years). Each cell has a local clock which goes through the G1, S, G2
and M phases, typically (but not necessarily) following a 24 h
cycle. Cell duplication with inheritance is allowed, with individual
probability laws depending on the cell state at any given time.
Normal, stem, or tumor cells of various kinds can be included,
though in this work only normal cells will be considered. In the
simplest implementation, adapted to mimicking in vitro experi-
ments on cell colonies, simulated cells live on a two-dimensional
fixed square grid and can migrate by vicinal displacements. Dif-
fusion of, e.g., oxygen, nutrients, or other chemical species is
allowed on the same grid.

These model cells can absorb a number of different damaging
events, described by a Markov chain which changes the state of
each cell from healthy, to progressively damaged, to arrested and
finally dead. In this first paper we model only radiation-induced

Table 1
List of the principal model variables. Unless differently indicated, all the variables are adimensional.

Symbol Variable Units Role Values

N Lattice size Linear size of the square lattice —

i Site index Label of lattice site [1,N2]
Nc Number of cells Running size of the cell population —

u(i) Cell index Label of cell u on a lattice site [1,Nc]
Δ Dose Amount of energy supplied over a given time interval ½0;1�
n Cell state vector vector containing all local cell parameters —

t Global time Seconds Universal ’laboratory’ time of the simulation ½�1;1�
Δt Time step Seconds, minutes Discrete simulation time increment [0.001–0.1]
td Cell time Minutes Time clock local to each cell [0,1440]
t0 Duplication time Minutes Time since last duplication for each cell ½0;1�
τ Duplication time constant Minutes See Eq. (1) 30
ϕ Cell phase index Defines the cell phase (G0,G1,S,G2,M) [0,4]
T Cell type index Epithelial, fibroblast, nerve, muscle, hematopoietic [1,5]
λ Cell state index Normal, senescent, quiescent, arrested, neoplastic, stem, dead [1,7]
ν Damage type Double- or single-strand breaks (DSB, SSB) [1,2]
zν Damage counter Counts accumulated number of defects of type ν ½0;1�
pν Damage probability Probability of generating a defect of type ν ½0;1�
rν Repair probability Probability of healing a defect of type ν ½0;1�
Ncrit Critical damage Number of lethal damage (DSBs) above which a cell is considered dead [5,100]
D Number of duplications Number of duplications undergone by each cell ½0;1�
S Senescence factor Describe the senescence of each cell [1,0]
D0 Number of duplications Number of duplications at which senescence starts 30
Ds Number of duplications Number of duplications at which senescence is complete 60
Pn Cell state probability Probability that cell is in state n at a given time [0,1]
Pdupl Duplication probability Controls probability of duplication for each cell [0,1]
Parr Arrest probability Controls probability of arresting a cell for DSB accumulation or senescence [0,1]
Pdeath Death probability Controls probability of cell death when DSBs in a cell approach Ncrit [0,1]
α Retarding parameter Slows cell killing by DSB accumulation 41
Prestart Restart probability Controls probability of restarting cell cycle from an arrested state [0,1]
β Accelerating parameter Accelerates cell repair capability to promote restarting [0.5–2.]
cμuðiÞ Chemical concentration Instantaneous concentration of species μ in cell u(i) ½0;1�
sμuðiÞ Source concentration Constant source of species μ in cell u(i) ½0;1�
θμ Diffusion time Minutes Inverse diffusion coefficient for species μ ½0;1�
cB B-factor concentration Instantaneous concentration of ’bystander’ pro-mitogenic factor ½0;1�
sB B-factor source Constant source of ’bystander’ pro-mitogenic factor ½0;1�
DB B-factor diffusion coefficient Reciprocal of θB, the diffusion time of the ’bystander’ pro-mitogenic factor across the cell

membrane
½0;1�

γ Coupling parameter Couples concentration of B-factor to cell duplication time [0.1–2.]
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