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H I G H L I G H T S

� Model sockeye salmon population dynamics are compared to measured spawner counts.
� Consistency and amplitude of population oscillations are quantified.
� Interaction with a predator is likely to be the cause of cyclic dominance.
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a b s t r a c t

A model of sockeye salmon population dynamics that incorporates predator–prey dynamics in the
nursery lakes, salmon migration and stochastic effects is compared to Fraser River sockeye salmon
spawner numbers with respect to cyclic dominance. For this comparison we use a method developed by
White et al. (2014) to calculate measures for the consistency and strength of cyclic dominance in the time
series using its wavelet transform. We find that the model can match the oscillation patterns found in
nature, both for persistently oscillating populations and for intermittent oscillations. It matches persis-
tently oscillating populations much better than a model that does not incorporate predator–prey
interaction. Persistent oscillations are more likely to occur in the model if the growth conditions for the
sockeye fry are good and the coupling to the predator is strong.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Several populations of sockeye salmon spawning in the Fraser
River system in British Columbia, Canada, show a remarkably
strong population oscillation called cyclic dominance (Ricker,
1950; Townsend, 1989; Ricker, 1997). Sockeye salmon are impor-
tant ecologically, culturally and economically (Cohen, 2012). They
spend much of their life in the ocean, but return to spawn where
they hatched. Because sockeye salmon die after spawning, the
salmon spawning runs bring large amounts of nutrients from the
ocean into the rivers and lakes. Sockeye salmon are also a lucrative
fishing target. Despite their importance the phenomenon of cyclic
dominance is not yet fully understood.

Various causes for the oscillation have been proposed (Levy and
Wood, 1992; Myers et al., 1998). One important aspect is that only
a few populations are consistently oscillating, and the peaks of the
oscillation occur in different years for different populations. So

cyclic dominance cannot be caused by an influence that affects all
sockeye populations equally. The cause affects each spawning
population individually, and can therefore be expected to reside in
the nursery lakes where the sockeye fry spend the first months of
their life.

Guill et al. (2011) proposed that predator–prey interaction in
the nursery lakes is causing cyclic dominance. A model for sockeye
population dynamics was introduced, and produced time series
with a striking resemblance to the spawner numbers of the per-
sistently oscillating populations. This model was further investi-
gated and simplified (Guill et al., 2014) or extended (Schmitt et al.,
2014). Unlike these deterministic models, in nature the sockeye
salmon are constantly exposed to a variety of stochastic effects.
Therefore Schmitt et al. (2012) introduced random perturbations
into the modelling of the sockeye life cycle.

White et al. (2014) propose a different cause for cyclic dom-
inance. They used a model that includes the sockeye life cycle and
random perturbations, but no predator–prey interaction or other
forms of delayed density-dependence. In a deterministic version of
this model, the spawner number would follow a dampened
oscillation pattern and eventually reach a fixed point. Oscillations
are sustained only due to the perturbations. This can lead to time
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series with similar oscillation characteristics as found in nature. To
quantify this similarity, White et al. (2014) introduced measures C
for the cyclic consistency and D for the dominance. These are
calculated using a wavelet-transform of the time series, which
exposes how the frequency components in a signal vary over time.
C quantifies how consistently the time series oscillates with a
certain period, e.g. four years. D quantifies the amplitude of that
oscillation.

While it is easy to obtain time series that oscillate weakly and
intermittently from a model without predator–prey dynamics, the
strong persistent oscillations observed in some natural populations
are much less frequent in this model; in addition to suitable model
parameters, their creation also requires a specific series of random
perturbations. This suggests that it is not just the four-year life cycle
combined with random perturbations that is causing cyclic dom-
inance. In this paper, we use the measures introduced by White
et al. (2014) to compare time series from our model that includes
predator–prey interaction with the natural time series. We find that
the model with predator–prey interaction is better able to repro-
duce persistent oscillations than a model without delayed density
dependence. Fig. 1 shows examples of spawner counts together
with the corresponding values of C and D.

In the following, we first introduce the model for sockeye sal-
mon population dynamics and the method used to analyze the
time series. Then we present our results and discuss their ecolo-
gical implications.

2. Model

The model we use for sockeye salmon population dynamics
was first introduced with three species in Guill et al. (2011), but in
this paper we use the two-species version from Guill et al. (2014)
with noise added as in Schmitt et al. (2012). It is mechanistic,
containing only the ingredients we assume to be relevant to cyclic
dominance. These are the sockeye life cycle and the interaction
with a predator in the nursery lakes, combined with random
perturbations. The predator–prey interaction is modelled con-
tinuously in time using ordinary differential equations for the
biomass densities of sockeye fry and the predator from spring
(t ¼ 0) to fall (t ¼ T) of each year. The life cycle and perturbations
are modelled using a discrete step that determines the spring
biomasses from those at the end of earlier years. The model
alternates between the continuous part and the discrete part.

The differential equations for sockeye fry biomass density Fn
and predator biomass density Pn (with n denoting the current
year) are

d
dt
FnðtÞ ¼ rFn 1�Fn

K

� �
� f ðFn; PnÞPn; ð1Þ

d
dt
PnðtÞ ¼ ef ðFn; PnÞPn�dPn: ð2Þ

The sockeye fry biomass grows logistically with maximum rate r
up to a carrying capacity K. The predator loses biomass due to
respiration and mortality with the rate d. The predator feeds on
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Fig. 1. Sockeye spawner abundance in four lakes in the Fraser River system (White et al., 2014), and simulation results from the model described in Section 2 with similar C
and D. The simulation results have random parameters from the ranges specified in Section 4.2. They were picked randomly from the results with C and D very close to the
values of the population in the left column. We plotted the base ten logarithm of the spawner abundance. The simulations give spawner densities, they were multiplied by
106 in order to translate this into realistic values for spawner counts. The two top rows show consistently oscillating populations, with the typical dominant–subdominant–
weak–weak pattern. The populations in the bottom rows are oscillating only intermittently.
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