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Modeling predicts a connection between sinus vortex effects and aortic compliance
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a b s t r a c t

We submit this letter in order to clarify some methodological issues and concerns raised by Spronck et al.
(2015) related to our mathematical modeling of aortic valve dynamics during systole Aboelkassem et al.
(2015). It is important to note at the outset that these clarifications do not impact the simulation output
or conclusions we originally reported in that paper. However, Spronck et al. have led us to recognize
some unfortunate omissions and minor typographical errors in the methods portion of our report that,
once corrected, will allow others to more easily reproduce and understand our results.

& 2015 Elsevier Ltd. All rights reserved.

1. Variable systemic vascular resistance using pulsed wave
velocity

Pulse wave velocity (Vp) is directly related to the mechanical
properties of the vascular walls and is widely used to determine
wall distensibility (Mcdonald, 1998; Milnor, 1989; Lehmann et al.,
1996; Westerhof et al., 2010). In Eqs. (7)–(13) of our report
(Aboelkassem et al., 2015), the pulse wave and momentum
equations were used to derive a constitutive relationship between
the systemic vascular resistance Rsc, area Asa, and capacitance Csa,
i.e., Rsc¼Rsc (Asa, Csa). Our analysis assumed Rsc, Asa, and Csa to be
time-dependent to account for possible distensibility D during the
cardiac cycle.

Spronck et al. (2015) correctly noted some unfortunate incon-
sistencies in our derivation of an expression for Rsc as a function of
Vp. We inadvertently used the symbol Vp when we had actually
intended to refer to the flow velocity, VF, in Eqs. (7)–(10)
(Aboelkassem et al.). Furthermore, we omitted some details in the
derivation that made it difficult to follow the development of the
final governing equation relating Rsc to Vp (Eq. (13) in Aboelkassem
et al.). We present here an alternate derivation that we feel is a
simpler method for obtaining the final equation for Rsc. In this
derivation, there is no need to assume ∂Rsc=∂Asc ¼ 0 or involve this
derivative term in any way. In Point 2 below, we will also show an
alternative approach to reach the same Rsc expression using a
derivative approach to both flow resistance and pulsed (water-
hammer) equations.

Consider the laminar blood flow VF through the proximal aorta
to the systemic veins. The pressure drop can be given using Poi-
seuille formula

ΔP ¼ Psc�Psv ¼ RscQsc ¼ RscAscVF ð1Þ
Next, we make the assumptions that the pressure wave pulsatility
along the proximal aorta does not completely decay, that there is
no reflection, and that the venous pressures are invariant and
negligible. Accordingly, the “water-hammer” equation (Allieve,

1909; Khir et al., 2001; Wang and Parker, 2004) can be used to
relate changes in pressure and flow velocity along the forward (þ)
characteristic line:

ΔPffiρVpVF ð2Þ
From Eqs. (1) and (2), an expression for the systemic vascular
resistance Rsc can be found as a function of the pulse wave velocity
Vp:

Rsc ¼
ρ
Asc

Vp ð3Þ

Recall the relationship between pulse wave velocity Vp and wall dis-
tensibility D by Bramwell and Hill (1922), Vp ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðρDÞ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Asc=ðρCscÞ
p

, where D¼ ð1=AscÞ∂Asc=∂psc and Csc ¼ ∂Asc=∂psc . If this
expression for Vp is substituted back into Eq. (3) while assuming that
the lumped area Asa¼Asc and that the compliance of capillary walls
are similar to that of the very end of the proximal aorta, the systemic
vascular resistance can be given as

Rsc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ= AsaCsað Þ

p
ð4Þ

Alternatively, one can define the pulse wave velocity in terms of
inertance L using the Langewouters model (Langewouters et al., 1984),
Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðLCscÞ

p
, where L¼ρ=Asc and substitute this back into Eq. (3)

to obtain similar expression for Rsc. While the earlier mistakes and
omissions are regrettable, it should be noted that they did not affect
the final expression in Eq. (13) in the original report, and hence our
previously presented results remain unchanged.

2. Variable systemic resistance during a cardiac cycle

Spronck et al. (2015) also raise concerns about our formulation of
a variable systemic vascular resistance (VSVR). We believe that the
confusion arises from thinking of resistance as only arising from fluid
shear. However, this combined resistance term accounts not only for
the vascular flow resistance but also considers the contribution
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induced by wall distensibility and blood inertia. Our derived
expression for VSVR can be shown to be analogous to the expression
given by Eqs. (1) and (5) in the papers by Wesseling et al. (1993) and
Langewouters et al. (1984), respectively. Hence, unlike a simple
Poiseuille-type resistance that represents the ratio of average pres-
sure drop to average flow, VSVR accounts for the effects of wall
distention and inertia, not unlike the afterload provided by a four-
element Windkessel model (Stergiopulos et al., 1999).

In Figure 2d of our paper (Aboelkassem et al., 2015), we showed
the VSVR distribution over a cardiac cycle. This distribution is gov-
erned by a set of coupled non-linear equations (5, 14, and 16 therein).
The variations of VSVR during the cardiac cycle can be understood
from amathematical standpoint as follows: the resistance is no longer
coupled to the average pressure only but also to the gradient of the
blood flow (dQsc/dt � acceleration/deceleration effects) and the
lumped area Asa as given by Eq. (5) in Aboelkassem et al. (2015). This
suggests that the VSVR has to change during the cardiac cycle in order
to balance the inertial effect represented by the term ρLsa/Asa, which
takes into account the blood flow acceleration during systole and
deceleration during diastole from the aortic root to systemic the veins.
In addition, we noted that the VSVR distribution over a cardiac cycle
has a profile that looks similar to the aortic pressure profile. This
similarity in shape arises from the fact that both Asa and Csa are strong
functions of the aortic pressure.

Although VSVR as formulated fluctuates by 30 % during the
cardiac cycle, the entire distribution still falls within the physio-
logical range of healthy human vasculature, which varies between
1 and 1.5 mmHg s/ml as reported in many sources. For instance,
according to Kusumoto, the value of SVR for a normal subject can
range between 1170 7 270 dyns s/cm5), which is about 0.675–
1.08 mmHg s/ml (see Table 1-1 in Kusumoto, 1999). In another
source, SVR was reported between 700 and 1600 dyns s/cm5,
which is about 0.525-1.2 mmHg s/ml (see Table 30-1 in Klingen-
smith et al., 2008). Furthermore, Virag and Lulić (2008) used a
value of Rsc¼1.429 mmHg s/ml in their simulations. It should be
noted that our average value of VSVR during a cardiac cycle was
about Rsc¼1.216 mmHg s/ml (Aboelkassem et al., 2015).

Gu et al. (2012) have shown the relationship between the
systemic vascular resistance and the mean arterial pressure (MAP),
which we reproduce here in Fig. 1(a). The mean VSVR and the
mean pressure for both Virag and Lulić (MAP¼97.3 mmHg) and
Aboelkassem et al. (MAP¼94.53 mmHg) are plotted on the
same axes to show that these values are actually within the phy-
siological range, assuming that MAP for healthy human hearts is in
the range of 100710 mmHg (grey shaded area).

Spronck et al. (2015) also note that they were unsuccessful in
repeating our calculations of VSVR, and while investigating this we
became aware of the fact that some of the parameter values we
reported were actually initial literature values, and not the final
values we obtained after optimization. Final values for the para-
meters Amax, Po, and P1 (appearing in Eqs. (14) and (15)) were
optimized in order to reproduce physiological pressure wave
forms for both left ventricle and aorta. The initial values for these
parameters were Amax¼1.75 cm2, Po¼74 mmHg, and
P1¼57 mmHg. We imposed physiological systolic and diastolic
pressures as well as dicrotic notch constraints during the optimi-
zation procedure. Sample results for the optimization procedure
are given here in Fig. 1(b) and (c). The procedure yielded values of
Amax¼0.505 cm2, Po¼46.5 mmHg, and P1¼35.8 mmHg, with the
corresponding results shown in Fig. 2 in our paper (Aboelkassem
et al., 2015). A quick test for this result can be done manually by
using diastolic and systolic arterial pressures of 80 and 120 mmHg
with the optimized parameters (above), which will render the
systemic diastolic and systolic resistances to be 0.938 and
1.4548 mmHg s/ml, respectively.

Finally, there was also a question about our assumption ∂Rsc=∂
Asc ¼ 0 that we used when deriving the Rsc expression. Although
we have shown in point 1 in this letter that you can reach the
same expression without neglecting this term or even having to
take the derivative at all. However, herein we show some extra
details on how to derive the same constitutive relationship and
why we have neglected this term. If we recall again the Poiseuille
law (Eq. (1)), and differentiate with respect to Asc,

∂ΔP
∂Asc

¼ RscVFþAscVF
∂Rsc

∂Asc
ð5Þ

by using the chain rule ∂Rsc
∂Asc

¼ ∂Rsc
∂psc

∂psc
∂Asc

, and recalling the definitions of
distensibility and compliance, respectively: D¼ ð1=AscÞ∂Asc=∂psc
and Csc ¼ ∂Asc=∂psc. The above equation can be rewritten as

1=Csc ¼ RscVFþðVF=DÞ
∂Rsc

∂psc
ð6Þ

If we assume that VSVR is a weak function of the pressure in the
systemic circuit and yet depends on distensibility “D”, we can
neglect ∂Rsc

∂psc
and model the distensibility “D¼ Csc=Asc” contribution

to the variable systemic resistance using the pulse wave velocity
(Vp) via the water-hammer equation. Therefore, the above equa-
tion can be simplified to

VF ¼ 1=RscCsc ð7Þ

Fig. 1. (a) Averaged value of systemic resistance. The effect of varying Amax at Po¼46.5 mmHg, P1¼35.8 mmHg on both (b) left ventricular and aortic pressure waves,
(c) variable systemic vascular resistance.
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