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H I G H L I G H T S

� A mathematical model was primely used to explain the mechanism of the bactericidal properties of the cicada wing surface.
� The maximum stretching of bacterial layer is at the top of the nanopillars/ridges in region A.
� Optimal antibacterial nanostructures are analyzed and discussed.
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a b s t r a c t

A natural biomaterial has been discovered with bactericidal activities, which is mainly attributed to its
nanopatterned surface structure. The surface of Clanger cicada (Psaltoda claripennis) wings has been
identified as a natural bactericidal material, which has lead to the emergence of research on the
development of novel antibacterial surfaces. From the interactions between bacterial biofilms and
nanopatterned surface structures, a new mechanical model is proposed that investigates the rupture of
bacterial cells within the framework of the “stretching” theory. The effect of surface nanoroughness on
the survival of bacterial cells is evaluated by determining the stretching ability of their cell walls. The
results, calculated using Gram-positive and Gram-negative bacteria as examples, show a correlation
between the stretching of the cell wall and the geometric parameters of the surface structures. The
theoretical results indicate that for a given cell rigidity, the bactericidal nature of the surface is deter-
mined by the geometric parameters of the surface structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Some biological materials, including the surfaces of cicadae and
lotus (Nelumbo nucifera), exhibit contaminant-free natures, even
though they are innately surrounded with potential contaminants
in their natural environments (Bazaka et al., 2011; Bhushan et al.,
2009; Marmur, 2004; Zhang et al., 2006; Zhao et al., 2009). Sig-
nificant attention has been paid to the contamination-prevention
mechanism of these naturally existing surfaces, both experimen-
tally and theoretically, since their self-cleaning properties were
discovered. These surfaces have special physical surface structures
that significantly increase their hydrophobicity, even to the point
of superhydrophobicity, thus, endowing them with self-cleaning
qualities (Guo et al., 2011; Su et al., 2010; Watson et al., 2010;
Wenzel, 1936; Zheng et al., 2005). Some research groups have tried
to establish a relation between the self-cleaning and antibiofouling
properties of natural surfaces with those that can prevent the

attachment and accumulation of biological material (Carbone,
2004; Decuzzi and Ferrari, 2010; Wenzel, 1936; Zheng et al., 2005).
As has been recently reported, superhydrophobic/self-cleaning
surfaces are not necessarily antibiofouling in nature. Pseudomonas
aeruginosa cells that could adhere relatively effectively onto the
surface of the wings of the Clanger cicada (Psaltoda claripennis)
were killed with extreme efficiency by the wing surface. The
experimental results suggest that there are only physical interac-
tions between bacterial cells and cicada wing surface. Thus, the
bactericidal properties of the wings are a result of the mechanical
rupture of the bacteria, arising from physical interactions between
the cells and nanoscale wing surface structure. A stretching model
has been developed by Elena P. Ivanova and colleagues to provide
insights on the interactions occurring between bacterial cells and
cicada wing surface structures. On the basis of this model, the
adsorption of the bacterial cell walls on the pattern of the cicada
wing surface could cause a drastic increase in the total area,
accompanied by stretching of the cell wall, which could lead to
irreversible cell membrane rupture and bacterial death. On the
other hand, a very detailed theoretical model has been presented
for the prediction of the strength of cellular adhesion to originally
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inert surfaces as a function of the surface structure, accounting for
both specific (ligand–receptor) and non-specific interfacial inter-
actions (physical interactions) (Decuzzi and Ferrari, 2010; Cam-
poccia et al., 2013; Hasan et al., 2013a, 2013b; Ivanova et al., 2012,
2013; Nguyen et al., 2013; Pogodin et al., 2013). Results from this
model suggest that only physical interactions between bacterial
cells and cicada wing surface structures cannot provide sufficient
energy to lead to full adhesion and irreversible cell rupture.

In this study, we provide another theoretical model to explain
the mechanism of the bactericidal properties of the cicada wing
surface. On the basis of the interactions between bacterial cells
and nanopatterned surface structures, an elastic mechanical model
is proposed that investigates the rupture of bacterial cells within
the framework of the stretching theory. The effect of surface
nanoroughness on bacterial cells is evaluated by determining the
stretching degree of the cell walls. The results for the stretching
degree of Gram-positive and Gram-negative bacteria as functions
of the geometric parameters of surface structures are obtained and
discussed. The theoretical results indicate that given the cell
rigidity, the bactericidal nature of the antibacterial surfaces is
determined by the geometric parameters of the surface structures.

2. Theoretical model

Two kinds of surfaces, covered either with nanopillar or
nanoridge structures, were considered onto which sparsely dis-
tributed bacterial cells adhered. As the thickness of bacterial cell
walls are an order of magnitude smaller than the dimensions of
the nanostructures on these surfaces, the bacterial membranes can
be treated as thin elastic layers, whose structural details and
composition can be neglected. In other words, we focused our
attention on the stretching layer of a bacterial cell interacting with
the surface nanostructures, without losing generality. The differ-
ence between the stretching layer and free layer of a bacterial cell,
i.e., the stretching degree, can be evaluated by calculating the
difference between the areas of bacterial cell membranes that
could either interact or not with surface nanostructures.
Mechanical ruptures would occur on bacterial cell walls if the
stretching degree of the elastic layer exceeds its threshold.

2.1. Nanoridge-covered surfaces

The side-elevation sketch map of a bacterial cell adhered onto
nanoridges is shown in Fig. 1, where the shaded region represents
the bacterial cell. Due to the interaction between nanoridges and
gravity, deformations occur along the elastic bacterial membrane,
as shown in Fig. 1. Assume that the side elevation of each peri-
odically arranged nanoridge is parabolic, height of each nanoridge
is H, width at the bottom of each parabola is 2R, contact area
between the bacterial membrane and nanoridge is SA, and area of
the suspended membrane is SB. For simplification, each bacterial
cell is treated as a cylinder with a diameter of A and density of ρ.
The length of each cylinder is greater than its diameter.

Let α denote the stretching of the bacterial membrane due to
its surface interaction, where k denotes the coefficient of stiffness
that is related to the intensity of the bacterial membrane and θ
denotes the angle between the tangent to the bacterial membrane
and horizontal line. When the stretching of the bacterial mem-
brane is within the range of elastic deformation, these stresses are
proportional to the stretching, and T/S¼Eα, where S is crossection
area and E is Young's modulus of the bacterial cell walls.

2.1.1. For the area of SA
Set a rectangular coordinate system, as shown in Fig. 1, where

the parabola intersects with the x-axis at points (R, 0) and (�R, 0),
αA is local stretching of the layer in region A, and αB is the local
stretching of the layer in region B. Then, the curve equation of the
parabola can be obtained as

g r H r R1 / .2 2( ) = ( − )

Hence, we can obtain the slope of the bacterial membrane:
g′(r)¼�tan θ.

The distance from the x-axis to the dividing line is r0, and
distance from the x-axis to an arbitrary point in the curve is r.
External forces on the cell membrane comprise G, which is the
local gravity of the bacterial cell, and T1 and T2, are the pulling
forces over and under the infinitesimal area, respectively (Fig. 2a).
Define γ as the thickness of the cell wall of the bacterium, λ¼ρgA
as the gravity of unit bacterial cell walls. Set an infinitesimal
membrane, taking the length as 1 nm, and the width (dr) in the
direction perpendicular and parallel to the tension, then we can
get the infinitesimal area ds¼1�dr. Let r′ be the radius of the
curvature and dθ be the field angle. Section stress of the infinite-
simal area can be written as follows (Gerstmayr et al., 2013; Such
et al., 2009):
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Set T0 to be the strain of the vertices and TA to be the strain at
any position in region (A); thus
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The strain at the dividing line can be regarded as
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2.1.2. For the area of SB
To determine the portion of the cell membrane suspended

between nanoridges (Fig. 2b), set its curvilinear equation as f(r);
hence, the slope is f′(r)¼�tan θ. The external forces can be
described through the catenary equation.
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Fig. 1. Side-elevation sketch map of a bacterial membrane adsorbing onto two
neighboring nanoridges, where H is the height of the nanoridge, 2R is the bottom
width of the nanoridge, SA denotes the part of the bacterial membrane covering the
nanoridge, SB denotes the suspended membrane surface, r0 is the distance from the
dividing line to the x-axis, and D is the distance between two adjacent nanopillars.
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