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HIGHLIGHTS

e We study n-player games in spatially structured populations.

e Such games are mathematically equivalent to transformed games in well-mixed populations.
e We illustrate our theory with an application to the evolution of collective action.

e Results depend on the kind of collective good, its economies of scale, and scaled relatedness.
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ABSTRACT

Many models proposed to study the evolution of collective action rely on a formalism that represents
social interactions as n-player games between individuals adopting discrete actions such as cooperate
and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-
player games games in spatially structured populations has so far proved elusive. We address this
problem by considering mixed strategies and by integrating discrete-action n-player games into the
direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable
strategies and to capture the effect of population structure by a single structure coefficient, namely, the
pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical
framework to investigate collective action problems associated with the provision of three different
kinds of collective goods, paradigmatic of a vast array of helping traits in nature: “public goods” (both
providers and shirkers can use the good, e.g., alarm calls), “club goods” (only providers can use the good,
e.g., participation in collective hunting), and “charity goods” (only shirkers can use the good, e.g.,
altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different
ways depending on the kind of collective good and its economies of scale. Our findings highlight the
importance of explicitly accounting for relatedness, the kind of collective good, and the economies of
scale in theoretical and empirical studies of the evolution of collective action.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

large game. Yet cooperation of this kind poses a collective action
problem: if individual effort is costly there is an incentive to

Collective action occurs when individuals work together to
provide a collective good (Olson, 1971). Examples abound in the
social and natural sciences: humans collectively build houses,
roads, walls, and mobilize armies to make war; bacteria secrete
enzymes that benefit other bacteria; sterile ant workers build the
nest and raise the brood of the queen; lions work together to catch
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reduce or withdraw one's effort, but if enough individuals follow
this logic the collective good will not be provided.

Much research in the social sciences has identified mechanisms
for solving collective action problems, including privatization and
property rights, reciprocity in repeated interactions, and institu-
tions (Hardin, 1982; Sugden, 1986; Taylor, 1987; Ostrom, 2003).
The principles behind these mechanisms have also been explored
in evolutionary biology (Boyd and Richerson, 1988; Noé and
Hammerstein, 2001; Strassmann and Queller, 2014) where it has
been further emphasized that individual effort in cooperation
should also increase as the relatedness between interactants
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increases (Hamilton, 1964). As social interactions often occur
between relatives (because of spatial structure, kin recognition,
or both; Rousset, 2004; Bourke, 2011) it is thought that relatedness
plays a central role for solving collective action problems in
biology. In particular, relatedness has been identified as the main
mechanism of conflict resolution in the fraternal major transitions
in evolution, i.e., those resulting from associations of relatives,
such as the transitions from unicellularity to multicellularity, or
from autarky to eusociality (Queller, 2000).

Mathematical models of collective action in spatially structured
populations or between relatives often assume that strategies are
defined in a continuous action space, such as effort invested into the
provision of a public good or level of restrain in resource exploitation
(Frank, 1995; Foster, 2004; Lehmann, 2008; Frank, 2010; Cornforth
et al., 2012). This allows for a straightforward application of the
direct fitness method (Taylor and Frank, 1996; Rousset, 2004) to
investigate the effects of relatedness on the evolution of collective
action. Contrastingly, many evolutionary models of collective action
between unrelated individuals (Boyd and Richerson, 1988; Dugatkin,
1990; Motro, 1991; Bach et al,, 2006; Hauert et al., 2006; Pacheco et
al., 2009; Archetti and Scheuring, 2011; Sasaki and Uchida, 2014)
represent interactions as n-player games in discrete action spaces
(e.g., individuals play either “cooperate” or “defect”). These models
can be mathematically involved, as identifying polymorphic equili-
bria might require solving polynomial equations of degree n—1, for
which there are no general analytical solutions if n > 6.

Here we integrate two-action n-player mixed strategy game-
theoretic models into the direct fitness method of social evolution
theory (Taylor and Frank, 1996; Rousset, 2004), which allows for
studying the effect of spatial structure on convergence stability by
using pairwise relatedness. Several shape-preserving properties of
polynomials in Bernstein form (Farouki, 2012) allow us to characterize
convergence stable strategies with a minimum of mathematical effort.
Our framework delivers tractable formulas for games between
relatives which differ from the corresponding formulas for games
between unrelated individuals only in that “inclusive payoffs” (the
payoff to self plus relatedness times the sum of payoffs to others)
rather than solely standard payoffs must be taken into account. For a
large class of games, convergence stable strategies can be identified
by a straightforward adaptation of existing results for games between
unrelated individuals (Pefia et al., 2014).

As an application of our modeling framework, we study the
effects of relatedness on the evolution of collective action under
different assumptions on the kind of collective good and its
economies of scale, thus covering a wide array of biologically
meaningful situations. To this aim, we distinguish between three
kinds of collective goods: (i) “public goods” where all individuals in
the group can use the good, e.g., alarm calls in vertebrates (Searcy
and Nowicki, 2005) and the secretion of diffusible beneficial
compounds in bacteria (Griffin and West, 2004; Gore et al., 2009;
Cordero et al., 2012); (ii) “club goods” where only providers can use
the good (Sandler and Tschirhart, 1997), e.g., cooperative hunting
(Packer and Ruttan, 1988) where the benefits of a successful hunt go
to individuals joining collective action but not to solitary indivi-
duals; and (iii) “charity goods” where only nonproviders can use the
good, e.g., eusociality in Hymenoptera (Bourke and Franks, 1995)
where sterile workers provide a good benefiting only queens.

For all three kinds of goods, we consider three classes of
production functions giving the amount of good created as a
function of the total level of effort and hence describing the
associated economies of scale: (i) linear (constant returns to scale),
(ii) decelerating (diminishing returns to scale), and (iii) accelerating
(increasing returns to scale). Although linear production functions
are often assumed because of mathematical simplicity, collective
goods can be characterized by either decelerating or accelerating
functions, so that the net effect of several individuals behaving

socially is more or less than the sum of individual effects. In other
words, social interactions can be characterized by (either positive or
negative) synergy. For instance, enzyme production in microbial
collective action is likely to be nonlinear, as in the cases of invertase
hydrolyzing disaccharides into glucose in the budding yeast Sac-
charomyces cerevisiae (Gore et al, 2009) or virulence factors
triggering gut inflammation in the pathogen Salmonella typhimur-
ium (Ackermann et al., 2008). In the former case, the relationship
between growth rate and glucose concentration in yeast has been
reported to be decelerating, i.e., invertase production has diminish-
ing returns to scale (Gore et al., 2009, Fig. 3c); in the latter case, the
relationship between the level of expression of virulence factors
and inflammation intensity appears to be accelerating, i.e., it
exhibits increasing returns to scale (Ackermann et al., 2008, Fig. 2d).

We show that the effect of relatedness on the provision of
collective goods, although always positive, critically depends on
the kind of good (public, club, or charity) and on its economies of
scale (linear, decelerating or accelerating production functions).
Moreover, we show that relatedness and economies of scale can
interact in nontrivial ways, leading to patterns of frequency
dependence and dynamical portraits that cannot arise when
considering any of these two factors in isolation. We discuss the
predictions of our models, their implications for empirical and
theoretical work, and their connections with the broader literature
on the evolution of helping.

2. Model
2.1. Population structure

We consider a homogeneous group-structured population with
a finite number of groups each containing an identical number of
haploid individuals. Spatial structure may follow a variety of
schemes, including the island model of dispersal (Wright, 1931),
the isolation-by-distance model (Malécot, 1975), the haystack
model (Maynard Smith, 1964), models where groups split into
daughter groups and compete against each other (Gardner and
West, 2006; Traulsen and Nowak, 2006; Lehmann et al., 2007b),
and evolutionary graphs (Ohtsuki et al., 2006; Taylor et al., 2007;
Lehmann et al., 2007a). We leave particular details of the life
history (e.g., whether generations are overlapping or non-over-
lapping) and population structure (e.g., the dispersal distribution)
unspecified as they do not affect our analysis. All that is required is
that the “selection gradient” can be written in a form proportional
to (4) below. For this, we refer the interested reader to Rousset
(2004), Lehmann and Rousset (2010) and Van Cleve (2015).

2.2. Social interactions

Within groups, individuals participate in an n-player game with
two available actions: A (e.g., “cooperate”) and B (e.g., “defect”).
We denote by a, the payoff to an A-player when k=0,1,...,n—1
co-players choose A (and hence n—1-k co-players choose B).
Likewise, we denote by b, the payoff to a B-player when k co-
players choose A. These payoffs can be represented as a table of
the form:

Opposing A-players 0 1 k n—1
Payoff to A do a, ai an_q
Payoff to B bg b, by bn_q

Individuals implement mixed strategies, i.e., they play A with
probability z (and B with probability 1—z). The set of available
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