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H I G H L I G H T S

� We propose a novel constraint, i.e., minimal network constraint, to facilitate the reconstruction of biological networks.
� Two scenarios were considered in the network reconstruction process: generating data using different initial conditions; and generating data from
knock out and over-expression experiments.

� Feasibility of our constraint for uncovering biological networks may offer new clues of the design principle of biological regulatory networks.
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a b s t r a c t

Reconstructing the topological structure of biological regulatory networks from microarray expression
data or data of protein expression profiles is one of major tasks in systems biology. In recent years,
various mathematical methods have been developed to meet this task. Here, based on our previously
reported reverse engineering method, we propose a new constraint, i.e., the minimum network
constraint, to facilitate the reconstruction of biological networks. Three well studied regulatory networks
(the budding yeast cell cycle network, the fission yeast cell cycle network, and the SOS network of
Escherichia coli) were used as the test sets to verify the performance of this method. Numerical results
show that the biological networks prefer to use the minimal networks to fulfill their functional tasks,
making it possible to apply minimal network criteria in the network reconstruction process. Two
scenarios were considered in the reconstruction process: generating data using different initial
conditions; and generating data from knock out and over-expression experiments. In both cases,
network structures are revealed faithfully in a few steps using our approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Technological advances facilitate accumulation of various types of
experimental data in biological processes. For example, the develop-
ment of microarray technique enables researchers to get genome
wide gene expression data of cells status under different conditions.
The explosive growth of biological data put forward a challenge to
uncover underlying regulatory networks, which belongs to the study
of biological network reverse engineering (Bansal et al., 2007;
D’haeseleer et al., 2000). Comparing to old manual way of network
construction (Kaizu et al., 2010), development of the reverse engi-
neering techniques enables researchers to systematically reconstruct

biological regulatory networks in a rather high speed. Many algo-
rithms with different computational complexity have been em-
ployed, including simple correlation-based method (Maucher et al.,
2011), Boolean Network Model (Zhang et al., 2013; Martin et al.,
2007; Haider and Pal, 2012) and Bayesian networks (Sachs ;et al.,
2005; Friedman et al., 2000). Their performances were tested in
different situations (Marbach et al., 2010, 2012).

On the basis of the reverse engineering, it is possible to
rationally design a sequence of experiments to maximally extract
the information of underlying networks (Zhang et al., 2013). In
general, existing knowledge from literatures and former experi-
ments may imply a large set of possible networks, so that new
discrimination experiments are needed to generate additional
information for reducing the number of possible networks. How-
ever, the information content in different experiments may vary a
lot, how to design new experiments to get maximal information
on network structure becomes a focus of systems biology.
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Recently, under the assumption that all the possible networks
have equal probability to be selected in nature, we have proposed
several methods to optimize experiment design, i.e., using a small
number of experiments to decipher network structure through
selecting of optimal initial condition (Zhang et al., 2013). We
demonstrated that reduction of number of possible networks is
largely facilitated if we apply such rational design procedures.

Here we propose a novel constraint to optimize the reverse
engineering process. Our new assumption is that in the whole set
of possible networks that can provide a specific biological function,
those with the minimal number of edges tends to be the biological
network. This is equivalent to adding a large weight on networks
with the minimum number of edges. It is similar to some linear
regression algorithm which induces penalty terms of coefficient,
like Lasso method. We test our assumption with three well-known
biological networks, including the budding yeast cell cycle net-
work, the fission yeast cell cycle network and the bacteria
Escherichia coli SOS network. Two different types of data are
examined, one is generated by using optimal initial conditions,
the other is data from expression perturbations like knockout and
over-expression. Numerical simulation results show that edges
shared by the minimal networks are contained in the biological
networks. After limited number of experiments, the only minimal
network turns to be the biological network.

Although our study was conducted in Boolean Network Model, our
approach may provide a general framework to limit possible network
number and can further incorporate other dynamic constraints, such
as attractor basin size (Li et al., 2004), regulation entropy (Wu et al.,
2009) in biological regulatory network construction.

2. Model

2.1. Biological networks

We test our method on three networks, the SOS network in E.
coli, the cell cycle networks of budding yeast (Li et al., 2004) and
fission yeast (Davidich and Bornholdt, 2008), as demonstrated in
Fig. 1. These networks are well established, they can be viewed as
representatives of biological networks. The interactions in these
regulatory networks govern various cellular functions, which we
termed as functional tasks. For cell cycle network of budding yeast,
Cln3 activates a pair of transcription factor groups, SBF and MBF,
which stimulates the transcription of Cln1/2 and Clb5/6. Activation
of Clb5 triggers the entry of the S phase, after which Clb2 is
activated and drives the cell into the M phase. After the M phase,
Sic1 and Cdh1 are activated and the cell comes back to the
stationary G1 phase. For cell cycle network of fission yeast, the
Start Kinase (SK) inactivates Ste9 and Rum1 and allows accumula-
tion of phosphorylated (inactive) form of Cdc2/Cdc13. During the
G2/M transition, Cdc2/Cdc13 becomes activated due to the activa-
tion of Cdc25 and inhibition of Wee1. In the M phase, PP is
activated and drives the cell back to the G1 stationary phase. For
SOS response pathway of E. coli., RecA is recruited to the single
stranded regions of DNA and becomes activated. Activation of RecA
releases the inhibition of SOS genes which are responsible for the
repair of DNA damage. When the DNA repair is completed, LexA is
activated and the expression of SOS genes is down-regulated. In
general, we refer functional task as a sequence of events which
should be tightly regulated for biological systems to exert corre-
sponding functions, which are presented in Tables 1–3.

2.2. Boolean network model and reverse engineering

We use Boolean Network model to generate dynamic behavior
(function) of above described systems. In Boolean model, a

biological species, such as DNA, mRNA and protein, are treated as
a node. Its associated Boolean statesSiA 0;1f g correspond to the on
(active) and off (inactive) states of the node. Regulation from node j
to node i is represented by coefficientaji. Weight of regulation is
reflected by the value of aji. We choose dominant inhibition form of
regulation (Zhang et al., 2013; Wang et al., 2010, 2012), with aji ¼ 1
for activation, aji ¼ �1 for inhibition and aji ¼ 0 for no regulation.
This captures the combinational rule of transcription, in which
presence of an inhibitor may block the process of transcription.
States of nodes in the network is updated via the following rule:

Siðtþ1Þ ¼ θðP
j
SjðtÞajiÞ;

P
j
SjðtÞajia0

Siðtþ1Þ ¼ SiðtÞ;
P
j
SjðtÞaji ¼ 0
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where θ is Heaviside step function: θðxÞ ¼ 1 when x40 and
θðxÞ ¼ 0 when xo0. For a given initial state, the system is updated
synchronously according to Eq. (1) until it reaches a steady state
known as attractor. The sequence of states is termed as a trajectory
of the system. Different initial states lead to different trajectories,
contributing to different responses and functions of the system. In
our work, we use these trajectories as output data of different kinds
of experiments instead of using realistic data. New experiments are
conducted by changing the initial condition or states of nodes. For
biological networks, normal trajectories can be generated using the
nature initial conditions, these trajectories are termed as biological
trajectories. The biological trajectories of the three networks are
presented in Tables 1–3.

In the reverse engineering process, the question is to derive
network structures that can produce experimental data. For the
Boolean Network model that discussed above, it is to derive the
network connection matrix from specific trajectories. Trajectory
constraints on network topology can be written as logic expres-
sions. Let logic variable rji denotes inhibition regulation from node
j to node i, with rji ¼ 1 (True) for such a regulation exist and rji ¼ 0
(False) for the opposite case. Similarly, let gji represents positive
regulation from node j to node i, and rij � gji ¼ 0. Auto- activation
and inhibition of node i is represented by gii and rii, respectively.
For a give trajectory, one can get logic constrain of node i,

siðtþ1Þ ¼
X
ja i

ðsjðtÞ � gjiÞþsiðtÞ � rii þsiðtÞ � gii

0
@

1
A

�∏
ja i

ðsjðtÞ � rji Þ ð2Þ

Eq. (2) of different time steps are combined to get the final
constraint of a trajectory. For multiple trajectories, one can get all
possible regulation pattern of each node according to the combination
of logical expressions, thus get all the possible networks. It is shown
that our reverse engineering method is applicable to in silico data
(Zhang et al., 2013). On the basis of this approach, we have proposed
the max-distance method, the sampling method, and the entropy
method to optimize experiment design (Zhang et al., 2013). They
diverge in performance on deduction of possible network number and
computational complexity. Here we choose the sampling method as
the benchmark for further discussion because of its high efficiency. It
mainly works as follows: for given trajectories of former experiments,
networks are sampled from whole possible space of topology. The
initial condition that can maximally separate the sampled networks is
chosen as the initial condition of next experiment to further confine
network structure. This process is repeated until the number of
possible networks converges. For more details see Zhang et al. (2013).

2.3. Minimal network constraint

Among all the possible networks, minimal networks are the
subset with the fewest edges, contributing to the backbone motif
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