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HIGHLIGHTS

e Fixation times of neutral mutations usually estimated by diffusion approximations.
e Here a coalescent theory approach is used to estimate these fixation times.

e The two approaches converge for large populations but differ for small populations.
e Coalescent approximations are more accurate for small population sizes.
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ABSTRACT

Evaluation of the time scale of the fixation of neutral mutations is crucial to the theoretical under-
standing of the role of neutral mutations in evolution. Diffusion approximations of the Wright-Fisher
model are most often used to derive analytic formulations of genetic drift, as well as for the time scales
of the fixation of neutral mutations. These approximations require a set of assumptions, most notably
that genetic drift is a stochastic process in a continuous allele-frequency space, an assumption
appropriate for large populations. Here equivalent approximations are derived using a coalescent theory
approach which relies on a different set of assumptions than the diffusion approach, and adopts a
discrete allele-frequency space. Solutions for the mean and variance of the time to fixation of a neutral
mutation derived from the two approaches converge for large populations but slightly differ for small
populations. A Markov chain analysis of the Wright-Fisher model for small populations is used to
evaluate the solutions obtained, showing that both the mean and the variance are better approximated
by the coalescent approach. The coalescence approximation represents a tighter upper-bound for the
mean time to fixation than the diffusion approximation, while the diffusion approximation and
coalescence approximation form an upper and lower bound, respectively, for the variance. The
converging solutions and the small deviations of the two approaches strongly validate the use of
diffusion approximations, but suggest that coalescent theory can provide more accurate approximations
for small populations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

assuming the absence of other forces - fixation as the sole allele in
the population or loss from the population. Both the probability

The study of the fixation process of neutral mutations in the
last decades has been instrumental to the advancement of theo-
retical population genetics, as well as to the understanding of the
evolutionary process. The stochastic process that accompanies the
genetic process, known as genetic drift, is responsible to drive
newly arisen neutral mutations to one of two eventual outcomes,
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with which these events occur (Kimura, 1962; McKane and
Waxman, 2007; Otto and Whitlock, 1997; Whitlock, 2003) and
the time scale of the fixation and loss processes (Burrows and
Cockerham, 1974; Kimura and Ohta, 1969a, 1969b; Kimura, 1980;
Waxman, 2012; Whitlock, 2003) has been extensively studied.
The most widely used model for description of the genetic
process is the Wright-Fisher model (Fisher 1922; Wright 1931). In
this model discrete generations and a discrete gene pool are
assumed. The gene pool in each generation is generated by
sampling with replacement using the allele frequency of the
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previous generation's gene pool, thus inducing a binomial dis-
tribution on the allele frequencies in the following generation. One
of the main mathematical approaches to deal with genetic drift is
the diffusion approximation of the Wright-Fisher model, first
introduced by Fisher (1922) and Wright (1931), and later devel-
oped and extended by Kimura (1964). The diffusion approach is a
prospective approach that approximates the process by a diffusion
of the probability density along the frequency space, assumed to
be continuous, over time. This approach has had a significant
influence on the development of the theory of neutral genetic
variation and modern evolutionary theory, as it enables the
description of quantities for many phenomena, such as the time
to fixation and loss of alleles (Kimura and Ohta, 1969a, 1969b). An
important special case of these results describes the time of
fixation of a neutral mutation conditioned on the occurrence of
such a fixation, a process known as the ‘conditional fixation
process’ (Kimura and Ohta, 1969a).

Another approach that was developed to study genetic drift
and genetic processes is coalescent theory (Kingman, 1982a). This
approach adopts a retrospective backwards-looking viewpoint on
the genetic process. Instead of asking how a certain generation's
allele frequency affects the allele frequencies in the following
generation, the coalescent approach is to ask how long ago
lineages of copies of a certain allele separated from their most
recent common ancestor (MRCA). Put in other words, the coales-
cence time of copies of an allele is the time it would take for them
to coalesce if the process was to be run backwards. This approach
has considerable computational and practical advantages when
addressing questions regarding processes that occurred in the
past, since only surviving lineages need be taken into account
(Rosenberg and Nordborg, 2002). The first papers of coalescent
theory dealt with simple ideal populations, but like the diffusion
approach, they were later supplemented with many studies
extending the approach's principles to various violations of the
ideal population (Hein et al., 2005; Nordborg, 2008).

Deriving analytic equations to describe the timescale of the
conditional fixation process is crucial to the understanding of the
polymorphism observed in many loci and in many organisms, since
neutral mutations on their way to fixation induce polymorphism in a
monomorphic locus, or enhance the polymorphism of an already
polymorphic locus for the time scale of the fixation process (Kimura,
1984). Thus equations describing the time scale of the conditional
fixation process, accompanied by the mutation rate and the prob-
ability of fixation of neutral mutations, can be applied to the analysis
of the observed genetic variation in nature, and to explain the
observed polymorphism in many organisms and loci. Deriving
approximations to the Wright-fisher model in order to generate
predictions for the timescales of the conditional fixation process of
mutations is also instrumental in the study of the role of neutral
mutations in evolution, as a source of genetic variation (Kimura,
1984; Ohta, 1992), and has been shown to effect population's
evolvability (Draghi and Wagner, 2008; Wagner, 2008).

While the importance of Kimura's and Ohta's original result
regarding the time to fixation of a neutral mutant has been
acknowledged (Watterson, 1996), an analytic confirmation of this
result using an alternative approach is of importance. This is so
since the diffusion approach forces continuity on the frequency
space, an assumption that is violated especially in small popula-
tions, which are of particular interest in population genetics and
conservation genetics. In this study the standard coalescent (n-
coalescent) model (Kingman, 1982b) of the Wright-Fisher model is
used, a model that does not assume a continuous frequency space,
to derive the mean time of the conditional fixation process of
a mutation, as well as its variance. It is shown that the conditio-
nal fixation and the coalescence of the entire population are
processes with identical time scales (although they do not occur

simultaneously and only partially overlap; Campbell, 1999), but
result in a different approximation of the conditional fixation
process. The diffusion approximation and the coalescence approx-
imation converge for large populations, but differ for finite
populations. Explicit Markov chain analysis of the Wright-Fisher
model focusing on small populations (N <100) are used to
compare the diffusion approximations with the coalescence
approximations.

2. The diffusion and coalescence approximations
2.1. The diffusion approximation of the conditional fixation process

The diffusion approach is based on formulating the Wright-
Fisher model using the Fokker-Plank diffusion equation (known
also as the Kolmogorov forward equation), and approximates the
probability density of the allele frequency over time. In order to
describe a diffusion process, the frequency space is formulated as a
continuous random variable rather than a discrete random vari-
able, although in a finite population an allele can attain only a
finite number of different allele frequencies (Waxman, 2011).
Under this formulation, the mean and variance of T(p, N), the time
to fixation of a neutral allele with initial frequency p in a
population of size N (the full formulation takes into account the
variance effective population size N,, but here the population is
considered to be ideal, thus N = N,), is given by (Kimura and Ohta,
1969a; Narain, 1970)
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For a neutral mutation, which initially appears in the population at
only one copy, the diffusion approximation for the mean time to
(conditional) fixation is therefore
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Note that the second order approximation of In(1—5k%) is needed
here, as the second order term is significant and cannot be
neglected. The diffusion approximation for the variance is given by
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The two convergences in Eqs. (3) and (4) are rapid and can be
applied to small population sizes as well. Note that when taking
p— 0 instead of p = 5}; to demonstrate the conditional fixation time
of a neutral mutation, the result is Eqgs. (3) and (4) without the
constant terms, and these are the results that most often appear in
the literature (and are more convenient when dealing with large
populations and continuous frequency spaces).

The diffusion approximation of the Wright-Fisher model is
extensively used in population genetics to obtain approximations
of biologically significant phenomena, such as the time to fixation
of a neutral mutation. The diffusion approximation of a neutral
allele converges to the Wright-Fisher model for large populations
(Guess, 1973). The error of the diffusion approximation has been
studied both numerically and analytically (Ethier and Norman,
1977; Ewens, 1963; Kimura, 1980; Zhao et al., 2013), and have
mostly been found to be quite accurate. However, it has been
pointed out that the diffusion theory may be vulnerable near the
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