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HIGHLIGHTS

e A general framework for the probability density of a reconstructed phylogeny.

e Derivation of the density under piecewise-linear rates and mass-extinction events.

e A unified notation to simplify the comparison between different birth-death models.
e A compendium of commonly used birth-death models in diversification rate analyses.

ARTICLE INFO

ABSTRACT

Article history:

Received 19 February 2014
Received in revised form

4 March 2015

Accepted 2 June 2015
Available online 12 June 2015

Keywords:

Birth-death process
Diversification

Incomplete taxon sampling
Probability density function
Likelihood

The homogeneous reconstructed evolutionary process is a birth-death process without observed extinct
lineages. Each species evolves independently with the same diversification rate—speciation rate, A(t), and
extinction rate, u(t)—that may change over time. The process is commonly applied to model species
diversification where the data are reconstructed phylogenies, e.g. trees estimated from present-day molecular
data, and used to infer diversification rates.

In the present paper I develop the general probability density of a reconstructed tree under any
homogeneous, time-dependent birth-death process. I demonstrate how to adapt this probability density
when conditioning on the survival of one or two initial lineages, or on the process realizing n species, and also
how to transform between the probability density of a reconstructed tree and the probability density of the
speciation times.

I demonstrate the use of the general time-dependent probability density functions by deriving the
probability density of a reconstructed tree under a birth-death-shift model with explicit mass-extinction
events. | extend these functions to several special cases, including the pure-birth process, the pure-death
process, the birth-death process, and the critical-branching process. Thus, 1 specify equations for the most
commonly used birth-death models in a unified framework (e.g. same condition and same data) using a

common notation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The birth-death process is commonly used to model species
diversification and to infer diversification rates (speciation and extinc-
tion rates) from reconstructed phylogenies (Nee, 2006). Likelihood-
based estimates, whether based on a maximum likelihood or Bayesian
framework, require the probability density function of the
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reconstructed tree under a birth-death process and dominate para-
meter estimation methods in phylogenetics (Huelsenbeck et al., 2001;
Holder and Lewis, 2003). Besides their use in parameter estimation,
the probability density functions are crucial for hypothesis testing, e.g.
in testing whether rates have been constant or variable over time
(Huelsenbeck and Rannala, 1997; Rabosky, 2006).

The probability density function of a reconstructed tree under
the reconstructed evolutionary process has been derived under
various scenarios by different authors (Yule, 1925; Kendall, 1948;
Raup et al., 1973; Thompson, 1975; Bailey, 1990; Hey, 1992; Nee
et al,, 1994; Rabosky, 2006; Lambert, 2010; Morlon et al., 2011;
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Stadler, 2011; Etienne et al., 2012) and has been applied in several
studies (for reviews see Ricklefs, 2004; Nee, 2006; Ricklefs, 2007;
Pyron and Burbrink, 2013). However, it remains challenging to
compare these probability density functions because they differ in
their notation, derivation and conditioning, e.g. conditioning on
survival of the process or conditioning on obtaining exactly n
species (Stadler, 2013). Furthermore, the probability density func-
tions are inconsistently applied to reconstructed trees or specia-
tion times: each requires different combinatorial factors. This
inconsistency prevents the use of model-selection methods and
so precludes the comparison of candidate models.

The present paper provides a study of the time-dependent
homogeneous reconstructed evolutionary process under various
time-dependent diversification rate functions and serves as a
compendium of probability distribution functions presented in a
common notation. I start by deriving the probability density of a
reconstructed tree under the time-dependent birth-death process
in the general case, e.g. with any diversification rate functions. I
then demonstrate how to condition on the survival of one initial
lineage (where the process starts at the stem node of the tree), two
initial lineages (where the process starts at the crown node of the
tree), or on the process realizing n species today. Additionally, I
show how any of the derived probability densities can be trans-
formed to apply to reconstructed trees or the speciation times of a
reconstructed tree only.

The use of the probability densities presented here lies in their
applicability to any diversification rate functions. I demonstrate
this flexibility by deriving the explicit probability density of a
reconstructed tree under a birth-death-shift model, e.g. piecewise
constant diversification rates, with explicit mass-extinction events.
I complete this discussion on the time-dependent reconstructed
evolutionary process with mass-extinction events by providing the
probability densities of a reconstructed tree under a pure-birth
process with constant-rate and exponentially decaying rate and a
constant-rate birth-death process.

2. The reconstructed evolutionary process

I define the birth-death process with non-constant rates for
rooted, strictly bifurcating trees following the notation of Nee et al.
(1994). Let N(t) denote the number of species alive at time t.
Furthermore, let the process start with a single species at time t,
such that N(tp) = 1. A speciation event increases the number of
species by one—i.e. from k to k+ 1 assuming that k species are alive
at time t—after an exponentially distributed time with rate kA(t).
Similarly, an extinction event decreases the number of species by
one after an exponentially distributed time with rate ku(t). At a
speciation event, one of the k species gives birth to a new species,
where the probability of each species giving birth is equally
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probable. At an extinction event, one species simply dies, where
each species has the same probability of going extinct. Commonly,
the process is stopped at the present time, denoted T, and the
number of extant species is denoted by N(T) = n. Fig. 1a depicts a
binary tree resulting from a birth-death process, showing both
extant and extinct lineages. This is known as a complete tree.
Fig. 1b shows the same tree but after removing all extinct lineages;
this is a reconstructed tree. Reconstructed trees are the data
(observations) that I consider here.

2.1. Probability density of a reconstructed evolutionary tree

Let ¥ denote a reconstructed evolutionary tree comprising a
tree topology 7 and the set of branching times T. Let us derive the
probability density of all speciation times T in the reconstructed
tree following Thompson (1975, Eq. (3.4.6)) (see also Eq. (20) in
Nee et al., 1994). I will use the notation that P(N(T) = n|N(t) = k) is
the probability of observing n species at time T given k living
species at time t. First, let me restate the probability of obtaining
exactly 1 species at time T with T > t. At any given time s, t <s<T,
the number of species could be between 1 and infinity, however,
all but one species must go extinct until time T (Thompson, 1975):

P(N(T) = 1|N(t) = 1) = i k x P(N(S) = k\ N(t) = 1)

k=1
xP(N(T)=1|N(s)=1)
x(P(N(T) = 0| N(s) = 1))* ! 4))

The factor k arises because any of the k currently alive species
could survive until the present and we need to consider each
possibility.

Next, let us consider each branch of the reconstructed tree (see
Fig. 1). There are two types of branches: (1) internal branches that
end at a speciation event denoted by Z and (2) terminal branches
that end at the sampling time T denoted by 7. The probability
density of the ith terminal branch, v;, that originated at time ¢; is
simply the probability of starting with one species and observing
exactly one species:

P(vilvie T)=P(N(T) =1|N(t) = 1). 2

The probability of the ith internal branch, v;, starting at time t; and
ending at a speciation event at time ¢; is given by the probability
that there were k species at time t;, one of these speciated with
probability kA(t;), this species survived (was sampled) but all other
k—1 species went extinct before the present time (were not
sampled):

P(vi|vieT)= i (k x Atj x P(N(t;) = k| N(t) = 1)
k=1

x(P(N(T) = 0| N(tj) = 1) 1), 3)

Fig. 1. A simulated birth-death tree starting with a single species at time to, thus N(to) = 1. The process was stopped at time T. (a) The complete tree containing both extant
and extinct species. (b) The reconstructed tree containing only extant species. Speciation events in the reconstructed tree occurred at times tq, t; and ts.
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