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H I G H L I G H T S

� We extend the transit compartment concept to approximately describe any lifespan distribution in aging populations.
� The developed distributed transit compartments are applied to solve the convolution integral in distributed lifespan models.
� The distributed transit compartments could be similarly implemented as traditional transit compartments.
� Applications to typical pharmacokinetics/pharmacodynamics questions are provided.
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a b s t r a c t

Transit compartment models (TCM) are often used to describe aging populations where every individual
has its own lifespan. However, in the TCM approach these lifespans are gamma-distributed which is a
serious limitation because often the Weibull or more complex distributions are realistic. Therefore, we
extend the TCM concept to approximately describe any lifespan distribution and call this generalized
concept distributed transit compartment models (DTCMs). The validity of DTCMs is obtained by
convergence investigations. From the mechanistic perspective the transit rates are directly controlled
by the lifespan distribution. Further, DTCMs could be used to approximate the convolution of a signal
with a probability density function. As example a stimulatory effect of a drug in an aging population with
a Weibull-distributed lifespan is presented where distribution and model parameters are estimated
based on simulated data.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In a population every individual has its own and unique
lifespan, typically described by a realization of a random variable
with a probability distribution. For example, general human life
expectancy or cell maturation processes could be well described
by the Weibull distribution (Slob and Janse, 1988). In more specific
mortality or survival analyses also more complex distributions are
used, e.g. mixtures of Weibull distributions for human mortality
with additional causes (Bebbington et al., 2007) or for red blood
cell survival with early mortality (Korell et al., 2011a, 2011b). Also
distributions like Gompertz–Makeham (Gavrilov and Gavrilova,
1991) or Heligman–Pollard (Heligman and Pollard, 1980) are
common. Moreover, specialized distributions exist e.g. to account
for growing late-life mortality (Bebbington et al., 2014).

In aging populations often an external stimulation or inhibition
on the production (birth) or loss (death) controls the amount of
individuals. In pharmacokinetic/pharmacodynamic (PKPD) model-
ing (Mager et al., 2003; Danhof et al., 2008) this is the effect of a
drug on a clinical endpoint or biomarker (e.g. cell counts). In many
PKPD models a transit compartment model (TCM) (Sun and Jusko,
1998; Koch et al., 2014), which are linked compartments described
by ordinary differential equations (ODE), is used to describe aging
populations. For example, with TCMs in Harker et al. (2000) and
Krzyzanski et al. (2013) the thrombopoietic stimulation on mega-
karyocytes and platelets was described, in Pérez-Ruixo et al.
(2008) the effect of erythropoitin on reticulocytes was modeled
and in Simeoni et al. (2004) a TCM to describe the apoptotic tumor
cell population caused by an anti-cancer agent attacking prolifer-
ating cells was applied. However, the TCM approach always
provides a gamma-distributed lifespan which is a severe limitation
of this tool. Therefore, the objective of this work is to extend the
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TCM concept to approximately describe any arbitrary lifespan
distributions. We call this approach distributed TCMs (DTCMs).

We will demonstrate that the DTCM approximates any lifespan
distribution. Furthermore, we present an equivalent mechanistic
reformulation of the DTCM to visualize the effect of the lifespan
distribution on the mortality of the individuals with various ages.
Additionally, we demonstrate that in the limit the solution of the
DTCM converges to the solution of a distributed lifespan model
(DLSM) introduced in Krzyzanski et al. (2006). Therefore, DTCMs
could also be used to handle these numerically difficult to solve
DLSMs. More precisely, the presented DTCM is a method to solve
general DLSMs without computationally expensive calculation of
the convolution integral. Moreover, the DTCM is still based on the
ODE system from the classical TCM and therefore could be
similarly implemented. As application we simulate data in MATLAB

(MATLAB, 2014) where the pharmacokinetics of a drug is
described by a one-compartment model with non-linear elimina-
tion and stimulates an aging population with a Weibull-
distributed lifespan. This data will be fitted and distribution as
well as model parameters will be estimated with the ADAPT-5

software (D'Argenio et al., 2009) which is a state of the art
program in PKPD modeling.

2. Theoretical

The classical TCM reads

d
dt
x1ðtÞ ¼ kinðtÞ�kx1ðtÞ; x1ð0Þ ¼ x01 ð1Þ

d
dt
xiðtÞ ¼ k xi�1ðtÞ�xiðtÞð Þ; xið0Þ ¼ x0i for i¼ 2;…;n ð2Þ

where kin denotes the production/inflow into the first transit
compartment x1, the transit rate between the compartments is
k40 and n denotes the integer number of compartments which is
usually fixed a priori. The time necessary for an individual starting
in compartment x1 to subsequently pass through the compart-
ments xi, i¼ 2; :::;n�1; and finally to leave from the last compart-
ment xn is called the transit time τ. Assuming that the individuals
move independent, the transit time can be described by a random
variable T . It can be shown that T is gamma-distributed with the
probability density function (PDF)

lðτÞ ¼ gnk ðτÞ ¼
knτn�1

ðn�1Þ!expð�kτÞ ð3Þ

(see Appendix A for details). The mean transit time (MTT) is

MTT ¼ EðT Þ ¼
Z 1

0
slðsÞ ds¼ n

k
ð4Þ

and the variance of the transit times (VTT) reads

VTT ¼ VarðT Þ ¼
Z 1

0
s2lðsÞ ds�MTT2 ¼ n

k2
: ð5Þ

Note that the TCM related parameters n and k in (1)–(2) are also
the gamma distribution parameters in (3)–(5).

In this work, we apply TCMs in the context of aging populations
and call the MTT the mean lifespan, denoted with T, and the
compartments xi, i¼ 1;…;n, in (1)–(2) are the aging stages
describing the amount of individuals within a specific age range
(also called a cohort). The sum of all aging stages

ynðtÞ ¼ x1ðtÞþ⋯þxnðtÞ ð6Þ
is the total amount of individuals in the aging population. In Fig. 1,
the scheme of the TCM (1)–(2) with (6) is shown. Note that no
outflow from the intermediate aging stages exist and all indivi-
duals leave the population from the last compartment.

To introduce our general framework let T be an arbitrary
random variable describing the lifespan τ. With l we denote the
probability density function (PDF), assume that negative lifespans
are not possible, i.e. lðτÞ ¼ 0 for τo0, and that lðτÞ for τZ0 is
piecewise continuous. The probability that an individual achieves
a certain lifespan τ is given by the survival function

SðτÞ ¼P½T 4τ� ¼ 1�P½T rτ� ¼ 1�
Z τ

0
lðsÞ ds¼ 1�LðτÞ ð7Þ

where L is the cumulative distribution function (CDF).
To construct a distributed transit compartment model (DTCM)

which realizes the lifespan distribution T , we create an equidi-
stant discrete grid of the lifespan interval I¼ ½0; τend� where τend is
a natural given bound of the lifespan, i.e., τend is the minimal
positive number which fulfills the condition

τend ¼minfτ∣SðτÞ ¼ 1�L τð Þrαg ð8Þ
for a given probability significance level α, compare Koch and
Schropp (2013) and see Fig. 2. Then we set the grid

τi ¼
i
k

for i¼ 0;…;m

with

τend ¼
m
k
:

This defines the age classes

Ii ¼ ½τi�1; τi½; i¼ 1;…;m

with length

τi�τi�1 ¼
1
k
; i¼ 1;…;m:

Note, for PDFs with compact support ½ta; tb� we set τend ¼ tb and
obtain SðτendÞ ¼ 0, and a significance level α is needless.

The prescribed distribution of T is included into the TCM by
weighting the amount of individuals in the aging stages xi with the
probability that an age τi will be achieved. With the survival
function (7) we set the effective population in each aging stage as

~xiðtÞ ¼ Sðτi�1ÞxiðtÞ for i¼ 1;…;m: ð9Þ
Summing up the stages ~xi then results in the effective population
according to the CDF

ymðtÞ ¼ Sðτ0Þx1ðtÞþ⋯þSðτm�1ÞxmðtÞ: ð10Þ
Summarizing, the resulting DTCM reads

d
dt
x1ðtÞ ¼ kinðtÞ�kx1ðtÞ; x1ð0Þ ¼ x01 ð11Þ

d
dt
xiðtÞ ¼ k xi�1ðtÞ�xiðtÞð Þ; xið0Þ ¼ x0i for i¼ 2;…;m ð12Þ

ymðtÞ ¼ Sðτ0Þx1ðtÞþ⋯þSðτm�1ÞxmðtÞ ð13Þ
see Fig. 3A for a schematic. The DTCM consists of the transit rate k,
the integer number of compartments m and additionally of the
distribution parameters in the CDF L. We emphasize that the
differential equations in the DTCM (11)–(12) are the same as in the
classical TCM. Only the summation of the stages differs in (13). The
matrix notation of (11)–(12) is

Fig. 1. The transit compartment model (1)–(2), (6) for an aging population with
gamma-distributed lifespans.
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