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H I G H L I G H T S

� Evolutionary dynamics of a community of competing species is considered.
� Our model is capable of generating stable systems with hundreds of interacting species, solving the complexity-stability problem.
� The emerged community has a modular structure.
� Closely related species have large niche overlap but small fitness differences.
� Relevance to many recent works on community structure, competition-relatedness, etc.
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a b s t r a c t

Species-rich communities, in which many competing species coexist in a single trophic level, are quite
frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex
competitive systems become unstable and unfeasible when the number of species is large. Recently,
many studies have attributed the stability of natural communities to the structure of the interspecific
interaction network, yet the nature of such structures and the mechanisms behind them remain open
questions. Here we introduce an evolutionary model, based on the generic Lotka–Volterra competitive
framework, from which a stable, structured, diverse community emerges spontaneously. The modular
structure of the competition matrix reflects the phylogeny of the community, in agreement with the
hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and
weaker fitness differences, as opposed to pairs of species from different modules. The competitive-
relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this
evolutionary model Q4.

& 2015 Published by Elsevier Ltd.

1. Introduction

A long standing puzzle in theoretical ecology regards the
coexistence of many competing species in a single community on
a confined spatial domain. This phenomenon is ubiquitous in
nature, manifesting itself in many systems such as fresh-water
plankton (Evelyn Hutchinson, 1961; Stomp et al., 2011), tropical
forests (Steege et al., 2013) and coral reefs (Connolly et al., 2014).
Although the empirical identification of niches and the quantifica-
tion of niche differentiation is a very difficult task in high-diversity
assemblages, it seems clear that the overlap between niches of
different species is substantial, as most of these species extensively
utilize a common small set of resources, such as space, nutrients
and water.

This, however, makes coexistence problematic, as first noticed
by Robert May in his classical 1972 paper May (1972). For a system
with random degrees of niche overlap, May showed that the
number of coexisting species is quite limited unless the overlaps
are extremely small. This problem is known as the complexity–
diversity puzzle: a complex system (in our context, many coexist-
ing and strongly competing species) cannot be diverse, since
generically there exists a combination of competitor species that
will apply strong pressure on a given species and will drive it to
extinction. This is a probabilistic effect: for any number of species
there exists a set of interaction matricies that allow for coex-
istence, but the chance of a randomly picked matrix to fulfill this
condition decays exponentially with the number of species (see
recent discussion in Allesina and Tang, 2012). Even if, by some
miracle, the interaction parameters support a high-diversity com-
munity, any slight perturbation of the environment will lead to an
altered interaction matrix and almost surely a substantial loss of
diversity.
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Clearly, an empirically observed collection of trees or plankton
species is not a random assemblage but the outcome of a long
evolutionary process during which new species appeared and old
species became extinct, eventually yielding the current structure
of the community. Accordingly, one would like to study an
evolutionary model in order to see if, or under what conditions,
the evolutionary process may “solve” the complexity–diversity
problem, i.e., whether or not a set of interaction matrices support-
ing coexistence may appear spontaneously from the evolutionary
dynamics.

Several evolutionary models have been suggested in an attempt
to address the complexity–stability problem. Ginzburg et al. (1988)
presented an evolutionary model based on Lotka–Volterra dynamics
in conjunction with speciation events. Upon speciation, the interac-
tion of the daughter species are set to be similar to those of the
mother species modulo small and random modifications (Akçakaya
and Ginzburg, 1991). The model of Ginzburg et al. is conceptually
appealing in its assumptions and method yet it resulted in stable
coexistence of only a very limited number of species (�6), too small
to account for empirically observed communities. Other approaches,
e.g. Tokita and Yasutomi (2003) and Yoshida (2003), were based on a
similar evolutionary mechanism however they allowed for mutua-
listic interactions. The inclusion of mutualistic interactions combined
with speciation and extinction events applies a selective pressure
towards symbiotic interactions, thereby fostering the coexistence of
many species. While these models did exhibit coexistence of a large
number of species (tens or more) they cannot account for ecosystems
inwhich there is no or negligible mutualistic interactions. See further
consideration in the Discussion section.

Here we propose a modified version of the Ginzburg et al.
model, which does succeed in producing a stable community with
many (up to hundreds) species. Our modification is motivated by
the insight that competitive interactions arise from niche overlap;
the necessarily non-perfect niche overlap between a daughter and a
mother species inevitably leads to weaker competition between
individuals of the mother and daughter species than that of
conspecific individuals. This idea is implemented by the addition
of a new parameter, ho1, which controls the strength of interac-
tion between mother and daughter species relative to the intras-
pecific interaction. This seemingly minor change has the effect of
increasing the number of coexisting species by over an order of
magnitude.

The resulting model evades the theorem of May by generating a
nonrandom structure for the matrix of interaction strengths. One
simple way to verify this claim is by studying the community
structure with a randomly shuffled version of the interaction
matrix. Indeed, we find that the random shuffled system leads to
the extinction of large numbers of species, reducing the system to a
few coexisting survivors.

Another way of investigating the structure is via the use of
standard “modularity maximization” algorithms that are designed
to detect modular structure in matrices. Running an algorithm of
this type (Blondel et.al, 2008), we find that it succeeds in identifying
a significant degree of modularity.

We can do better however since we have access to the phyloge-
netic history of the species in the simulation. Using the phylogenetic
distance matrix and a phylogeny reconstruction algorithm to reorder
the species, a unique hierarchical structure of the interaction matrix
is revealed. In this structure, which arises spontaneously via the
evolutionary process, the interaction matrix can be partitioned into
subcommunities such that the interaction strength between two
species within the same subcommunity is high while the interaction
between two species from different subcommunities is low. It is
moreover seen that the species within a subcommunity are phylo-
genitically closely related while species in two different sub com-
munities are only distantly related.

In the following section we describe our model and equations
in detail. In Section 3 we present our results and in the last section
we discuss our main findings and describe several future research
directions.

2. Materials and methods

Our results emerge from simulations of the generalized com-
petitive Lotka–Volterra model, where speciation and extinction
events are allowed to change the number of species, generating an
evolutionary process. Denoting the (instantaneous) number of
species in the community by Q, the dynamics satisfies

_ni ¼ αni 1�ni

K

� �
�ni

K

XQ
j ¼ 1

Ci;jnj; ð2:1Þ

where ni is the abundance of species i, α is the linear growth rate
(assumed for simplicity to be species-independent), K is the
carrying capacity and Ci;j is the competition matrix.

Formally, even when a species is under strong competitive
pressure and its abundance decays, the dynamics described by the
deterministic (2.1) leads to decay of its abundance to infinitesimal
values but it can never reach zero. This property of (2.1) is a
disadvantage, since species may recover from a long period of
diminishing abundance when the community structure changes
during evolution, while in the real world species that undergo
extinction are out of the game for good. To allow for extinction we
define a threshold value n0, below which a species is removed
forever and the corresponding row and column of the matrix Ci;j are
deleted.

Speciation events, on the other hand, involve the addition of a
species to the dynamics described by (2.1). To model speciation, an
existing species is chosen at random (with a probability propor-
tional to its population size) to be the “mother” species, and its
population is reduced by 5%; the individuals belonging to this 5%
fraction are declared as a new, “daughter” species, that inherits
most of the features of the mother species up to small modifications
as described below. This implies that closely related species play a
similar role in the dynamics (2.1), reflecting the similarity of their
biological functions.

We illustrate this speciation process via the example of two
species becoming three due to the speciation of species 1. Denot-
ing the daughter species by the label 3, the change in the
interaction matrix Ci;j is given by

0 C1;2

C2;1 0

 !
)

0 C1;2 hð1�γÞþγϵ1
C2;1 0 C2;1ð1�γÞþγϵ2

hð1�γÞþγϵ3 C1;2ð1�γÞþγϵ4 0

0
B@

1
CA

ð2:2Þ
Our model distinguishes between the competition of the

daughter species with its mother and its competition with all other
species. For any species other than the mother, the daughter
inherits the competition terms of its mother with small, random
modifications. In particular, if Cmother;j is the interaction of the
mother with species j;Cdaughter;j ¼ Cmother;jð1�γÞþγϵ, where γ⪡1
and ϵ is a random variable drawn from a gamma distribution with

mean 1 and variance 1. In Eq. (2.2) we numbered the ϵ's to
emphasize that each of them is chosen independently from the
same distribution. The competition matrix terms for Cj;daughter are
obtained using the same procedure.

The mother–daughter interaction terms are subject to different
rules. As explained, the mother and the daughter are usually
similar in their biological functions, however some degree of niche
separation appears to be a condition for successful speciation.
Accordingly, we set Cmother;daughter ¼ hð1�γÞþγϵ, where the

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

E. Shtilerman et al. / Journal of Theoretical Biology ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Shtilerman, E., et al., Emergence of structured communities through evolutionary dynamics. J. Theor. Biol.
(2015), http://dx.doi.org/10.1016/j.jtbi.2015.07.020i

http://dx.doi.org/10.1016/j.jtbi.2015.07.020
http://dx.doi.org/10.1016/j.jtbi.2015.07.020
http://dx.doi.org/10.1016/j.jtbi.2015.07.020


Download English Version:

https://daneshyari.com/en/article/6369731

Download Persian Version:

https://daneshyari.com/article/6369731

Daneshyari.com

https://daneshyari.com/en/article/6369731
https://daneshyari.com/article/6369731
https://daneshyari.com

