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H I G H L I G H T S

� Simple resource-based mechanisms of mutualism are proposed.
� Resource ephemerality allows the derivation of mechanistic numerical responses.
� Limitations in resource delivery cause diminishing returns of mutualistic service.
� Consumers of mutualistic resources follow Schoener's competition equations.
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a b s t r a c t

Many mutualisms involve inter-specific resource exchanges, making consumer–resource approaches
ideal for studying their dynamics. Also in many cases these resources are short lived (e.g. flowers)
compared with the population dynamics of their producers and consumers (e.g. plants and insects),
which justifies a separation of time scales. As a result, we can derive the numerical response of one
species with respect to the abundance of another. For resource consumers, the numerical responses can
account for intra-specific competition for mutualistic resources (e.g. nectar), thus connecting competi-
tion theory and mutualism mechanistically. For species that depend on services (e.g. pollination, seed
dispersal), the numerical responses display saturation of benefits, with service handling times related
with rates of resource production (e.g. flower turnover time). In both scenarios, competition and
saturation have the same underlying cause, which is that resource production occurs at a finite velocity
per individual, but their consumption tracks the much faster rates of population growth characterizing
mutualisms. The resulting models display all the basic features seen in many models of facultative and
obligate mutualisms, and they can be generalized from species pairs to larger communities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

- Nous ne notons pas les fleurs, dit le géographe

- Pourquoi ça! c'est le plus joli!

- Parce que les fleurs sont éphémères

Le Petit Prince, Chapitre XV – Antoine de Saint-Exupéy

Early attempts to model the dynamics of mutualisms were based
on phenomenological descriptions of interactions. The best known
example involves changing the signs of the inter-specific competition
coefficients of the Lotka–Volterra model, to reflect the positive effects
of mutualism (Vandermeer and Boucher, 1978; May, 1981). This
simple, yet insightful approach, predicts several outcomes depending
onwhether mutualism is facultative or obligatory. One example is the

existence of population thresholds, where populations above thresh-
olds will be viable in the long term, but populations below will go
extinct. The same approach, however, reveals an important limitation,
that the mutualists can help each other to grow without limits, in an
“orgy of mutual benefaction” (sic. May, 1981), yet this is never
observed in nature. One way to counter this paradox is to assume
that mutualistic benefits have diminishing returns (Vandermeer and
Boucher, 1978; May, 1981), such that negative density dependence
(e.g. competition) would catch up and overcome positive density
dependence (mutualism) at higher densities. This makes intuitive
sense because organisms have a finite nature (e.g. a single mouth,
finite membrane area, minimum handling times, etc.), causing
saturation by excessive amounts of benefits. Other approaches con-
sider cost-benefit balances that change the sign of inter-specific
interactions from positive at low densities (facilitation) to negative
at high densities (antagonism) (Hernandez, 1998).

Holland and DeAngelis (2010) introduced a general framework
to study the dynamics of mutualisms. In their scheme two species,
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1 and 2, produce respectively two stocks of resources which are
consumed by species 2 and 1, according to Holling's type II
functional response, and which are converted into numerical
responses by means of conversion constants. In addition, they
consider costs for the interaction in one or both of the mutualists,
which are functions of the resources offered to the other species,
also with diminishing returns. In their analyses, the resources that
mediate benefits and costs are replaced by population abundances
as if the species were the resources themselves. This assumption
enables the prediction of a rich variety of outcomes, such as Allee
effects, alternative states, and transitions between mutualisms and
parasitisms.

The work of Holland and DeAngelis (2010) uses concepts of
consumer-resource theory to study the interplay between mutualism
and antagonism at population and community levels, but the
functional responses are not actually derived from first principles.
In other words, there is no explicit mechanism that justifies why the
resource provided by species 1, can be replaced by the abundance of
species 1 (or some function of it). If the functional responses are
considered phenomenologically that is not a problem, consumer-
resource theory makes predictions using phenomenological relation-
ships, like the Monod and Droop equations (Grover, 1997). For
example, the half-saturation constant for mutualism in species 1 is
a trivial concept, it is just the abundance of species 2 that produces
half of the maximum benefit that species 1 can possibly receive. But
things can be conceptually problematic when these saturating
responses are rewritten and interpreted in the style of Holling's type
II disc equations (Vázquez et al., 2015) because, what is the handling
time of a plant that uses a pollinator or seed disperser? Or at which
rate does a plant attack a service?

I will show that in some scenarios of mutualism, it is very
convenient to consider the dynamics of the resources associated
with the interaction in a more explicit manner, before casting
them in terms of the abundances of the mutualists. As it turns out
in many situations, these resources, or the resource providing
organs, have life times that are on average much shorter than the
lives of their producers and consumers. For example, the life of a
tree can be measured in years and that of a small frugivore in
months, but many fruits do not last more than a few weeks. Given
their fragility and cost (Primack, 1985; McCall and Irwin, 2006),
flowers are definitely ephemeral in comparison with pollinators
like hummingbirds, but certainly not to mayflies.1 Processes like
diffusion and chemical reactions, can remove nutrients faster than
the life cycles of their intended consumers. Taking advantage of
this fact, the resources can be assumed to attain a steady-state
against the backdrop of the population dynamics, and thus be
quantified in terms of the present abundances of the providers and
the consumers in a mechanistic manner. Using this approach, it is
possible not just to derive the numerical responses in terms of
populations abundances, but also to do it in terms of parameters
that could be measured, such as the rates of resource production,
their decay, and consumption. Intra-specific competition for
mutualistic benefits can be related to consumption rates, and
concepts such as the “handling time” of a plant would make sense,
not just intuitively. This in turn opens the possibility of framing
the costs of mutualism by means of trade-offs relating vital
parameters. The scenarios presented here are meant to promote
more thinking in this direction, that of considering the separation
of time scales, in order to tie together mutualism, competition, and
consumer-resource theories in more mechanistic ways.

2. Exchanges of resources for resources

Consider two species i; j¼ 1;2 providing resources to each other.
Their population biomasses ðNiÞ change in time ðtÞ according to the
differential equations:

dN1

dt
¼ G1ð�ÞN1þσ1β1F2N1

dN2

dt
¼ G2ð�ÞN2þσ2β2F1N2 ð1Þ

where Fi is the amount of resources or food provided by species i, βi is
the per-capita consumption rate per unit resource by species i, and σi
its conversion ratio into biomass. The function Gi is the per-capita
rate of change of species i when it does not interact with species j by
means of the mutualism. The resource dynamics is accounted by a
second set of differential equations:

dF1
dt

¼ α1N1�ω1F1�β2F1N2

dF2
dt

¼ α2N2�ω2F2�β1F2N1 ð2Þ

Here I assume that the resource is produced in proportion to
the biomass of the provider with per-capita rate αi, and it is lost or
decays with a rate ωi if it is not consumed. I also assume that the
physical act of resource consumption does not have an instanta-
neous negative impact such as damage or death, on the provider
(e.g. they do not constitute vital body parts). There are costs
associated with resource production, but they do not affect the
derivations that follow here as well as in the next section. Never-
theless, the potential consequences of different kinds of costs are
briefly discussed at the end of this work.

As stated in the introduction, the life time of food or resource items
can be much shorter than the dynamics of the populations; in other
words, we can consider a slow dynamics for the populations and a fast
one for the resources (Rinaldi and Scheffer, 2000). As a consequence,
the resources will asymptotically approach a steady-state or quasi-
equilibrium dynamics well before the populations display significative
changes. Thus, assuming that dFj=dt � 0 in Eqs. (2), the steady-state
amount of resources

Fj �
αjNj

ωjþβiNi
ð3Þ

can be substituted in the dynamical equations of the populations (1)
using the appropriate indices:

dN1

dt
¼ G1ð�Þþ

σ1β1α2N2

ω2þβ1N1

� �
N1

dN2

dt
¼ G2ð�Þþ

σ2β2α1N1

ω1þβ2N2

� �
N2 ð4Þ

In model (4), the larger the receiver population, the lower the per-
capita rates of acquisition of mutualistic benefits. The decrease in
returns experienced by receiver i happens because the resource
produced by the provider ðαjNjÞ must be shared among an increasing
numbers of individuals, each taking a fraction βi=ðωjþβiNiÞ. This in
effect describes intra-specific competition for a finite source of energy
or resources, as originally modeled by Schoener (1978), with the only
difference that in Schoener's models resource supply rates are
constant. The interaction mechanism can be generalized to multiple
species, by adding additional consumption terms in Eqs. (1) and (2).
After the steady-state assumption, the multispecies version of Eqs. (4)
for species 1 will be

dN1

dt
¼ G1ð�Þþ

X
j

σj1βj1αjNj

ωjþ
P

kβjkNk

8<
:

9=
;N1 ð5Þ

where the index k belongs to species in the same guild as species 1 (its
competitors, including itself), and index j belongs to the guild of its

1 Mayflies belong to the order Ephemeroptera a word derived from the Greek
ephemera meaning short-lived, and ptera meaning wings. This is a reference to the
short lifespan of most adult mayflies.
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