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H I G H L I G H T S

� We propose discrete model with two variables comprising negative feedback.
� Discrete model generates self-sustained oscillations for some conditions.
� We derive ultradiscrete model from discrete model.
� Ultradiscrete model generates self-sustained oscillations for some conditions.
� Ultradiscrete model includes a Boolean system as a special case.
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a b s t r a c t

Many biological rhythms are generated by negative feedback regulation. Griffith (1968) proved that a
negative feedback model with two variables expressed by ordinary differential equations do not
generate self-sustained oscillations. Kurosawa et al. (2002) expanded Griffith's result to the general
type of negative feedback model with two variables. In this paper, we propose discrete and ultradiscrete
feedback models with two variables that exhibit self-sustained oscillations. To obtain the model, we
applied tropical discretization and ultradiscretization to a continuous model with two variables and then
investigated its bifurcation structures and the conditions of parameters for oscillations. We found that
when the degradation rate of the variables is lower than their synthesis rate, the proposed models
generate oscillations by Neimark–Sacker bifurcation. We further demonstrate that the ultradiscrete
model can be reduced to a Boolean system under some conditions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous examples of self-sustained oscillations are known at
the molecular to ecological levels, including cell division cycles,
segmentation clocks (Hirata et al., 2002), oscillations of p53
expression (Lahav et al., 2004), and periodical outbreaks of insects
(Liebhold et al., 2000). Many of these biological rhythms are
generated by negative feedback loops. At the molecular level,
autonegative feedback loops of clock genes, such as per, frq, cca1
and kai, produce circadian rhythms (Aronson et al., 1994; Ishiura
et al., 1998; McWatters and Devlin, 2011; Partch et al., 2014).
Negative feedback loops in a genetic circuit are very common such

that they are well known as a network motif (Alon, 2007). More
than 40% transcription factors in Escherichia coli repress their own
gene expression (Shen-Orr et al., 2002; Rosenfeld et al., 2002). At
the macroscopic level, a predator–prey system in an ecosystem
can be regarded as a negative feedback loop. The oscillations in
population size have been intensively examined from not only
theoretical but also experimental viewpoints (Fussmann et al.,
2000).

The range of number of reactions that constitute negative
feedback loops is broad. Some repressors can directly repress their
own expression. The HES1 protein, which is responsible for the
segmentation clock, can directly repress its own expression by
binding to the promoter of the hes1 gene (Hirata et al., 2002). In
contrast, the circadian clock genes form a complex negative
feedback loop with several steps, including multiple phosphoryla-
tion and nuclear transportation (Partch et al., 2014).

In this paper, we focus on the negative feedback loop compris-
ing two elements in biological networks. Griffith (1968) proved
that no oscillations are generated by the negative feedback model
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described as _M ¼ a
1þKEm

�bM; _E ¼ cM�dE through Bendixson
criterion.

Kurosawa et al. (2002) expanded Griffith's model to the
generalized case. They proved that no oscillations are produced
by the general class of negative feedback loop described as
follows:

dx1
dt

¼ f ðx2Þ�hðx1Þ; ð1aÞ

dx2
dt

¼ gðx1Þ�kðx2Þ; ð1bÞ

where f ðx2Þ is a monotonically decreasing function, and gðx1Þ,
hðx1Þ, and kðx2Þ are monotonically increasing functions. The proof
was given by the construction of the Lyapunov function for
Eqs. (1). This model corresponds to the case of a common feedback
loop of a single gene through transcription and translation.
Suppose x1 to be the amount of messenger RNA and x2 to be that

of protein.
df
dx2

is negative, given that proteins decrease the rate of

gene expression via negative feedback.
dg
dx1

is positive, given that

proteins are produced via the translation of mRNA.
dh
dx1

40 and

dk
dx2

40 should hold because of the degradation of the mRNA and

proteins. These conditions should also be satisfied in the simple
case of a predator–prey relationship. When x1 and x2 represent the

populations of prey and predator, respectively,
df
dx2

o0 and

dg
dx1

40 hold owing to predation, and
dh
dx1

40 and
dk
dx2

40 hold

because of their death.
In the negative feedback with n variables as follows:

dx1
dt

¼ f 1ðxnÞ�h1ðx1Þ; ð2aÞ

dx2
dt

¼ f 2ðx1Þ�h2ðx2Þ; ð2bÞ

⋮
dxn
dt

¼ f nðxn�1Þ�hnðxnÞ; ð2cÞ

the necessary condition for instability is

β1β2⋯βn

α1α2⋯αn
4 sec

π
n

� �� �n
; ð3Þ

where αi ¼
dhiðxiÞ
dxi

ði¼ 1;2;…;nÞ, βi ¼
df iðxi�1Þ
dxi�1

ði¼ 2;3;…;nÞ and

β1 ¼ �df 1ðxnÞ
dxn

. This condition is known as the secant condition

(Tyson and Othmer, 1978; Thron, 1991; Sontag, 2006). In particular,
if n¼2, any values of αi and βi cannot satisfy the condition (3)
because the right-hand side of Eq. (3) is infinity. This result is
consistent with Kurosawa et al. (2002).

The proof that negative feedback with two variables cannot
generate oscillation is limited to ordinary differential equations
(ODEs). Some researchers have recently focused on cases where
ODEs are not applicable. For example, gene expression noise is
unavoidable, owing to the low copy numbers of most genes. The
effect of molecular noise on the oscillation was assessed via
stochastic simulation (Barkai and Leibler, 2000; Gonze et al.,
2002; Nishino et al., 2013). Although impossibility of oscillations
was proved for ODE model of negative feedback with two
variables, whether the other model for negative feedback with

two variables can show self-sustained oscillations has not yet been
investigated.

Besides ODEs, discrete and ultradiscrete systems are used to
model dynamical systems. A discrete system treats the independent
variables such as time and space as discrete numbers and is
represented as a difference equation (Elaydi, 2005). An ultradiscrete
system treats both independent and dependent variables as discrete
numbers (Tokihiro et al., 1996). The qualitative behaviors may not
generally be conserved by discretizing or ultradiscretizing ODEs. For
example, although the logistic equation described as an ODE is
attracted to an equilibrium point, the logistic map obtained by the
forward discretization of the logistic equation shows a chaotic
behavior (May, 1976).

In the present study, we focus on discrete and ultradiscrete
negative feedback models with two variables. These models can
oscillate under some parameter conditions. We also investigated the
types of bifurcation and parameter conditions for the oscillations.

2. Discretization

In this section, we discretize a negative feedback model with
two variables and study its bifurcation structure.

2.1. Model

We consider the negative feedback model with two variables,
which is reduced from the three-variable model proposed by
Kurosawa et al. (2002), as follows:

dM
dt

¼ k

1þ P
h

� �n �aM; ð4aÞ

dP
dt

¼ sM�vP: ð4bÞ

If Eqs. (4) represent a genetic feedback loop, then M and P
correspond to amounts of mRNA and protein, respectively. We
assume that the parameters k, a, s, v, n, and h are positive. Because
Eqs. (4) are included in the class of (1), Eqs. (4) have no limit cycle
solutions. To nondimensionalize Eqs. (4), we define the dimen-

sionless variables M ¼ k
v
x, P ¼ ks

v2
y, t ¼ 1

v
τ and dimensionless

parameters b¼ a
v

and c¼ hv2

ks
. Then, Eqs. (4) are transformed into

dx
dτ

¼ 1

1þ y
c

� �n �bx; ð5aÞ

dy
dτ

¼ x�y: ð5bÞ

By applying tropical discretization (Murata, 2013) to Eqs. (5),
we obtain

xTþ1�xT
δ

¼

1

1þ yT
c

� �n �bxT

1þbδ
; ð6aÞ

yTþ1�yT
δ

¼ xT �yT
1þδ

; ð6bÞ

or,

xTþ1 ¼

xT þ
δ

1þ yT
c

� �n

1þbδ
; ð7aÞ
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