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H I G H L I G H T S

� We introduce a simple model for the
evolution of social behavior in a
family-structured population.

� We calculate fixation probabilities
and success conditions in terms of
game payoffs, sibling assortment,
and population size.

� Sibling assortment aids cooperation
in the Prisoner's Dilemma, but can
hinder cooperation in relaxed social
dilemmas.

� Inclusive fitness methods do not
apply to the general case of our
model.

� Inclusive fitness applies in the spe-
cial case of “equal gains from
switching”, but provides less infor-
mation than an analysis based on
gene frequency.
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a b s t r a c t

We present a simple model for the evolution of social behavior in family-structured, finite sized
populations. Interactions are represented as evolutionary games describing frequency-dependent
selection. Individuals interact more frequently with siblings than with members of the general
population, as quantified by an assortment parameter r, which can be interpreted as “relatedness”.
Other models, mostly of spatially structured populations, have shown that assortment can promote the
evolution of cooperation by facilitating interaction between cooperators, but this effect depends on the
details of the evolutionary process. For our model, we find that sibling assortment promotes cooperation
in stringent social dilemmas such as the Prisoner's Dilemma, but not necessarily in other situations.
These results are obtained through straightforward calculations of changes in gene frequency. We also
analyze our model using inclusive fitness. We find that the quantity of inclusive fitness does not exist for
general games. For special games, where inclusive fitness exists, it provides less information than the
straightforward analysis.

& 2015 Published by Elsevier Ltd.

1. Introduction

In many biological populations, family members interact fre-
quently with each other. Family structure is an important form of
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population structure, which can affect evolution in a variety of ways
(Nowak et al., 2010a). For example, spatial or group structure in a
population can promote the evolution of cooperative behaviors by
allowing cooperators to cluster together and limit exploitation by
noncooperators (Nowak and May, 1992; Durrett and Levin, 1994; van
Baalen and Rand, 1998; Ohtsuki et al., 2006; Traulsen and Nowak,
2006; Taylor et al., 2007; Allen et al., 2013; Simon et al., 2013; Allen
and Nowak, 2014; Débarre et al., 2014). However, this effect is
sensitive to the details of the evolutionary process: for some models,
spatial or group structure can have no effect (Taylor, 1992; Wilson
et al., 1992; Ohtsuki et al., 2006; Nowak et al., 2010b) or even a
negative effect (Hauert and Doebeli, 2004) on cooperation.

The evolution of cooperation and other social behaviors can be
studied mathematically using evolutionary game theory (Maynard
Smith and Price, 1973; Maynard Smith, 1982; Hofbauer and Sigmund,
1988, 1998; Weibull, 1997; Nowak and Sigmund, 2004; Nowak,
2006a; Broom and Rychtar, 2013). Social behaviors are represented
as strategies, and the fitness consequences of an interaction are
quantified as payoffs to each participant. First formulated for large,
well-mixed populations (Maynard Smith and Price, 1973), evolu-
tionary game theory has since been extended to populations
structured in various ways (Nowak et al., 2010a), including by finite
population size (Nowak et al., 2004; Taylor et al., 2004; Imhof and
Nowak, 2006), by space (Nowak and May, 1992; Durrett and Levin,
1994; Killingback and Doebeli, 1996; Ohtsuki et al., 2006; Korolev
and Nelson, 2011; Chen, 2013; Allen and Nowak, 2014; Débarre et al.,
2014; Rand et al., 2014), by groups (Traulsen and Nowak, 2006;
Simon et al., 2013), and by social sets (Tarnita et al., 2009a).

Inclusive fitness theory (Hamilton, 1964; Rousset and Billiard,
2000; Wakano et al., 2013; Lehmann and Rousset, 2014) is another
approach to studying the evolution of social behavior. In this
approach, each individual's fitness (expected number of viable
offspring) is expressed as a sum of portions of fitness due to itself
and each other individual. An individual's inclusive fitness is then
defined as a weighted sum of fitness portions bestowed on self and
others, where the weights represent relatedness to the recipient.

Inclusive fitness theory is regarded by its proponents as a general
and powerful framework for understanding the evolution of coop-
eration. Howevever, Nowak et al. (2010b), building on earlier
critiques by Cavalli-Sforza and Feldman (1978), Uyenoyama and
Feldman (1982), and Matessi and Karlin (1984), showed that fitness
is not generally equal to a sum of portions due to separate
individuals, and thus the quantity of inclusive fitness is only well-
defined in special cases. Some proponents of inclusive fitness theory
responded (Abbot et al., 2011; Gardner et al., 2011) that such portions
of fitness can always be identified using linear regression (Hamilton,
1970; Queller, 1992; Frank, 1998; see also Birch, 2014). Yet Allen et al.
(2013b) showed that this regression method relies on invalid use of
statistical inference tools and leads to false conclusions.

A different response was given by Bourke (2011), who ackno-
weldges that calculating inclusive fitness is a technically limited
approach to studying social evolution. Bourke argues nonetheless
that the more general and powerful methods used in evolutionary
game theory and population genetics are still “inclusive fitness
approaches”, in that they include the effects of interaction between
co-bearers of genes affecting social behavior. We agree that all such
effects are accounted for in these mathematically exact methods.
However, we find it misleading to refer to these methods as “inclusive
fitness approaches”, since the re-assignment of fitness effects from
recipient to actor—central to the concept of inclusive fitness—is
generally impossible and always unnecessary in applying them.

Given the controversy surrounding inclusive fitness theory, it is
worth asking how the consequences of family structure might be
investigated using the tools of evolutionary game theory. An impor-
tant step was provided by Grafen (1979), who developed a determi-
nistic, infinite-population model of evolutionary game dynamics

with a parameter r (sometimes called “relatedness”) quantifying
assortment between like types. A fraction r of one's interaction
partners guaranteed to be of one's same type, while the remainder
are drawn from the population at large. We call this model “r-
replicator dynamics”, because it generalizes replicator dynamics
(Taylor and Jonker, 1978; Hofbauer and Sigmund, 1988, 1998) to
include assortment. The r-replicator dynamics and variations thereof
have been applied to a wide variety of questions in evolutionary
dynamics (Eshel and Cavalli-Sforza, 1982; Bergstrom, 2003; Jansen
and van Baalen, 2006; Taylor and Nowak, 2006; van Veelen et al.,
2012; Alger and Weibull, 2013; Garcia and van Veelen, 2014).

Here we propose a simple model to investigate how family
structure affects the evolution of social behavior in a population of
finite size. We consider a Wright–Fisher process in which each adult
produces a large number of juveniles. Survival of juveniles is deter-
mined by their social interactions, which are represented as a game. A
fraction r of a juvenile's interaction partners are siblings, and the rest
are drawn from the overall juvenile population. Our model extends
Grafen's (1979) r-replicator dynamics to populations of finite size.

We derive exact conditions for a strategy to be favored under
weak selection. We first obtain results for arbitrary games, and
then restrict attention to a subset of games that describe coopera-
tion and defection in social dilemmas. Interestingly, the effect of
sibling assortment on the evolution of cooperation depends on the
nature of the social dilemma. For the Prisoner's Dilemma and
other stringent social dilemmas, cooperation is increasingly
favored with r. But for relaxed social dilemmas, sibling assortment
can have a negative or even nonmonotonic effect on cooperation.

These results are obtained using straightforward methods based
on the probabilities of gene frequency change. In order to connect
our results to the literature on inclusive fitness theory, we also
attempt to analyze our model using inclusive fitness methods. We
find that inclusive fitness is not a well-defined quantity for a general
2�2 payoff matrix, because the contributions that individuals make
to each others' fitness cannot be distinguished in a meaningful way.
Remarkably, even the linear regression method that is claimed to be
“as general as the genetical theory of natural selection itself” (Abbot
et al., 2011) fails for this model, because the costs and benefits turn
out to be underdetermined. Inclusive fitness is only well-defined for
games that satisfy equal gains from switching (Nowak and Sigmund,
1990), but in this case it provides less information than our
straightforward analysis based on gene frequencies.

2. Model

Our model is a finite-population analogue of the r-replicator
dynamics, and can also be described as a Wright–Fisher game
process (Imhof and Nowak, 2006) with assortative interactions
among siblings. We consider a population of N haploid adults, each
having one of the two competing genotypes, A and B. Reproduc-
tion is asexual. A generation consists of three phases:

1. Proliferation: Each adult produces a large number n≫1 of
juveniles, so that each parent contributes a fraction 1=N of
the juvenile population. Juveniles inherit their parent's
genotype.

2. Interaction: Each juvenile interacts with a large number of
others according to the matrix game

A B
A
B

a b

c d

� �
: ð1Þ

A fraction r of one's interaction partners are drawn from one's
siblings, while the remaining fraction 1�r are drawn uniformly
from the general population (both siblings and nonsiblings).
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